CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Software User Forums > SU2

Computation of Aerodynamic Loads for the Air Intake of a Supersonic Airplane

Register Blogs Community New Posts Updated Threads Search

Like Tree1Likes
  • 1 Post By wallym

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   December 21, 2021, 14:13
Post Computation of Aerodynamic Loads for the Air Intake of a Supersonic Airplane
  #1
New Member
 
Barış Bıçakçı
Join Date: Dec 2021
Location: Turkey
Posts: 7
Rep Power: 5
BarisBicakci is on a distinguished road
Hello everyone,
I'm trying to run viscous simulation for Supersonic flow over inlet of McDonnell Douglas F-15 Eagle. I have a project about Computation of Aerodynamic Loads that caused by the shockwave, on that inlet for this simulation. I could manage to run that simulation of supersonic flow over inlet of F-15 Eagle and you can find my results in the attachment file. But I couldn't figure out how can I compute these aerodynamic loads with using SU2 and observe with Paraview. I selected outlet of my geometry as a marker of the surface to be plotted or designed as you can see in my configuration file below. But I couldn't find which coefficients I should get in the history file.
And also, I couldn't decide which method is much proper for my simulation as a Convective numerical method and which Slope limiter that I should select.
I am using SU2 v7.2.1. You can find my configuration file below. Could someone help me to understand how should I proceed this project? I would be really appriciate for any kind of suggesstion.


% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations (EULER, NAVIER_STOKES,
% WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY,
% POISSON_EQUATION)
SOLVER= RANS
%
% Specify turbulence model (NONE, SA, SA_NEG, SST, SA_E, SA_COMP, SA_E_COMP, SST_SUST)
KIND_TURB_MODEL= SST
%
% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT)
MATH_PROBLEM= DIRECT
%
% Restart solution (NO, YES)
RESTART_SOL= NO
%
% System of measurements (SI, US)
% International system of units (SI): ( meters, kilograms, Kelvins,
% Newtons = kg m/s^2, Pascals = N/m^2,
% Density = kg/m^3, Speed = m/s,
% Equiv. Area = m^2 )
% United States customary units (US): ( inches, slug, Rankines, lbf = slug ft/s^2,
% psf = lbf/ft^2, Density = slug/ft^3,
% Speed = ft/s, Equiv. Area = ft^2 )
SYSTEM_MEASUREMENTS= SI

% ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------%
%
% Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 2.0
%
% Reynolds number (non-dimensional, based on the free-stream values)
REYNOLDS_NUMBER= 46.5E6
% Reynolds length (1 m, 1 inch by default)
REYNOLDS_LENGTH= 1.0
%
% Angle of attack (degrees)
AOA= 0.0
%
% Side-slip angle (degrees)
SIDESLIP_ANGLE= 0.0
%
% Free-stream pressure (101325.0 N/m^2 by default, only Euler flows)
FREESTREAM_PRESSURE= 101325.0
%
% Free-stream temperature (288.15 K by default)
FREESTREAM_TEMPERATURE= 300.0

% --------------------------- VISCOSITY MODEL ---------------------------------%
%
% Viscosity model (SUTHERLAND, CONSTANT_VISCOSITY).
VISCOSITY_MODEL= CONSTANT_VISCOSITY


% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation
REF_ORIGIN_MOMENT_X = 0.25
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 0.00
%
% Reference length for pitching, rolling, and yawing non-dimensional moment
REF_LENGTH= 1.0
%
% Reference area for force coefficients (0 implies automatic calculation)
REF_AREA= 1.0

% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
% Navier-Stokes (no-slip), constant heat flux wall marker(s) (NONE = no marker)
% Format: ( marker name, constant heat flux (J/m^2), ... )
MARKER_HEATFLUX= ( Wall, 0 )
%
% Marker of the far field (0 implies no marker)
MARKER_FAR= ( FarField )
%
% Supersonic inlet boundary marker(s) (NONE = no marker)
% Total Conditions: (inlet marker, temperature, static pressure, velocity_x,
% velocity_y, velocity_z, ... ), i.e. all variables specified.
MARKER_SUPERSONIC_INLET= ( Inlet, 300.0, 100000.0, 686.4, 0.0, 0.0 )
%
% Outlet boundary marker(s) (NONE = no marker)
% Format: ( outlet marker, back pressure (static), ... )
MARKER_OUTLET= ( Outlet, 10000.0 )
%
% Marker(s) of the surface to be plotted or designed
MARKER_PLOTTING= ( Outlet )
%
% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated
MARKER_MONITORING= ( Wall )

% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, LEAST_SQUARES,
% WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES
%
% Courant-Friedrichs-Lewy condition of the finest grid
CFL_NUMBER= 5.0
%
% Adaptive CFL number (NO, YES)
CFL_ADAPT= NO
%
% Parameters of the adaptive CFL number (factor down, factor up, CFL min value,
% CFL max value )
CFL_ADAPT_PARAM= ( 0.1, 2.0, 5.0, 1e10 )
%
% Runge-Kutta alpha coefficients
RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 )
%
% Number of total iterations
ITER= 10000
%
% Linear solver for the implicit formulation (BCGSTAB, FGMRES)
LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (ILU, JACOBI, LINELET, LU_SGS)
LINEAR_SOLVER_PREC= ILU
%
% Min error of the linear solver for the implicit formulation
LINEAR_SOLVER_ERROR= 1E-6
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 20

% -------------------------- MULTIGRID PARAMETERS -----------------------------%
%
% Multi-Grid Levels (0 = no multi-grid)
MGLEVEL= 0
%
% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE)
MGCYCLE= W_CYCLE
%
% Multi-grid pre-smoothing level
MG_PRE_SMOOTH= ( 1, 2, 3, 3 )
%
% Multi-grid post-smoothing level
MG_POST_SMOOTH= ( 0, 0, 0, 0 )
%
% Jacobi implicit smoothing of the correction
MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 )
%
% Damping factor for the residual restriction
MG_DAMP_RESTRICTION= 1.0
%
% Damping factor for the correction prolongation
MG_DAMP_PROLONGATION= 1.0

% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
% TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= JST
%
% Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations.
% Required for 2nd order upwind schemes (NO, YES)
MUSCL_FLOW= YES
%
% Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG,
% BARTH_JESPERSEN, VAN_ALBADA_EDGE)
SLOPE_LIMITER_FLOW= VENKATAKRISHNAN
%
% Coefficient for the limiter (smooth regions)
VENKAT_LIMITER_COEFF= 0.006
%
% 2nd and 4th order artificial dissipation coefficients
JST_SENSOR_COEFF= ( 0.5, 0.02 )
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT

% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Convergence criteria (CAUCHY, RESIDUAL)
CONV_FIELD= RMS_DENSITY
%
% Min value of the residual (log10 of the residual)
CONV_RESIDUAL_MINVAL= -24
%
% Start convergence criteria at iteration number
CONV_STARTITER= 10
%
% Number of elements to apply the criteria
CONV_CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CONV_CAUCHY_EPS= 1E-10

% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------%
%
% Convective numerical method (SCALAR_UPWIND)
CONV_NUM_METHOD_TURB= SCALAR_UPWIND
%
% Time discretization (EULER_IMPLICIT)
TIME_DISCRE_TURB= EULER_IMPLICIT
%
% Reduction factor of the CFL coefficient in the turbulence problem
CFL_REDUCTION_TURB= 1.0



% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
% Mesh input file
MESH_FILENAME= final.su2
%
% Mesh input file format (SU2, CGNS, NETCDF_ASCII)
MESH_FORMAT= SU2
%
% Mesh output file
MESH_OUT_FILENAME= mesh_out.su2
%
% Restart flow input file
SOLUTION_FILENAME= solution_flow.dat
%
% Restart adjoint input file
SOLUTION_ADJ_FILENAME= solution_adj.dat
%
% Output tabular format (CSV, TECPLOT)
TABULAR_FORMAT= CSV
%
% Output file convergence history (w/o extension)
CONV_FILENAME= history
%
% Output file restart flow
RESTART_FILENAME= restart_flow.dat
%
% Output file restart adjoint
RESTART_ADJ_FILENAME= restart_adj.dat
%
% Output file flow (w/o extension) variables
VOLUME_FILENAME= flow
%
% Output file adjoint (w/o extension) variables
VOLUME_ADJ_FILENAME= adjoint
%
% Output objective function gradient (using continuous adjoint)
GRAD_OBJFUNC_FILENAME= of_grad.dat
%
% Output file surface flow coefficient (w/o extension)
SURFACE_FILENAME= surface_flow
%
% Output file surface adjoint coefficient (w/o extension)
SURFACE_ADJ_FILENAME= surface_adjoint
%
%
% Screen output
SCREEN_OUTPUT=(INNER_ITER, WALL_TIME, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG)

% ----------------------- DESIGN VARIABLE PARAMETERS --------------------------%
%
%
% Kind of deformation (NO_DEFORMATION, SCALE_GRID, TRANSLATE_GRID, ROTATE_GRID,
% FFD_SETTING, FFD_NACELLE,
% FFD_CONTROL_POINT, FFD_CAMBER, FFD_THICKNESS, FFD_TWIST
% FFD_CONTROL_POINT_2D, FFD_CAMBER_2D, FFD_THICKNESS_2D,
% FFD_TWIST_2D, HICKS_HENNE, SURFACE_BUMP, SURFACE_FILE)
DV_KIND= SCALE_GRID
%
% - NO_DEFORMATION ( 1.0 )
% - TRANSLATE_GRID ( x_Disp, y_Disp, z_Disp ), as a unit vector
% - ROTATE_GRID ( x_Orig, y_Orig, z_Orig, x_End, y_End, z_End ) axis, DV_VALUE in deg.
% - SCALE_GRID ( 1.0 )
DV_PARAM= ( 1.0 )
%
% Value of the deformation
DV_VALUE= 10.0
Attached Images
File Type: jpg Inlet Geometry Solid.jpg (72.8 KB, 15 views)
File Type: jpg CFD.jpg (29.1 KB, 15 views)
BarisBicakci is offline   Reply With Quote

Old   December 22, 2021, 17:20
Default
  #2
Senior Member
 
Wally Maier
Join Date: Apr 2019
Posts: 123
Rep Power: 7
wallym is on a distinguished road
Hi BarisBicakci,

I would suggest changing the MARKER_PLOTTING= ( Wall ).
As for numerical schemes, JST will be suitable to reach a converged state. However, schemes like the AUSM/SLAU family tend be better in higher speed flow.
BarisBicakci likes this.
wallym is offline   Reply With Quote

Reply

Tags
intake aerodynamics, internal flow, su2, supersonic aircraft, supersonic flow


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
[ANSYS Meshing] Air flow through intake manifold zscheck ANSYS Meshing & Geometry 5 March 15, 2012 22:41
air bubble is disappear increasing time using vof xujjun CFX 9 June 9, 2009 08:59
Modelling BC for Air intake snorkel of automobile Piyush FLUENT 1 May 18, 2006 06:36
designing an air intake under gambit joseph guaragna FLUENT 0 November 20, 2001 07:21
incompressible air flow in air intake system reza besharati Main CFD Forum 4 June 4, 2001 21:23


All times are GMT -4. The time now is 13:02.