|
[Sponsors] |
Computation of Aerodynamic Loads for the Air Intake of a Supersonic Airplane |
|
LinkBack | Thread Tools | Search this Thread | Display Modes |
December 21, 2021, 14:13 |
Computation of Aerodynamic Loads for the Air Intake of a Supersonic Airplane
|
#1 |
New Member
Barış Bıçakçı
Join Date: Dec 2021
Location: Turkey
Posts: 7
Rep Power: 4 |
Hello everyone,
I'm trying to run viscous simulation for Supersonic flow over inlet of McDonnell Douglas F-15 Eagle. I have a project about Computation of Aerodynamic Loads that caused by the shockwave, on that inlet for this simulation. I could manage to run that simulation of supersonic flow over inlet of F-15 Eagle and you can find my results in the attachment file. But I couldn't figure out how can I compute these aerodynamic loads with using SU2 and observe with Paraview. I selected outlet of my geometry as a marker of the surface to be plotted or designed as you can see in my configuration file below. But I couldn't find which coefficients I should get in the history file. And also, I couldn't decide which method is much proper for my simulation as a Convective numerical method and which Slope limiter that I should select. I am using SU2 v7.2.1. You can find my configuration file below. Could someone help me to understand how should I proceed this project? I would be really appriciate for any kind of suggesstion. % ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% % % Physical governing equations (EULER, NAVIER_STOKES, % WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY, % POISSON_EQUATION) SOLVER= RANS % % Specify turbulence model (NONE, SA, SA_NEG, SST, SA_E, SA_COMP, SA_E_COMP, SST_SUST) KIND_TURB_MODEL= SST % % Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) MATH_PROBLEM= DIRECT % % Restart solution (NO, YES) RESTART_SOL= NO % % System of measurements (SI, US) % International system of units (SI): ( meters, kilograms, Kelvins, % Newtons = kg m/s^2, Pascals = N/m^2, % Density = kg/m^3, Speed = m/s, % Equiv. Area = m^2 ) % United States customary units (US): ( inches, slug, Rankines, lbf = slug ft/s^2, % psf = lbf/ft^2, Density = slug/ft^3, % Speed = ft/s, Equiv. Area = ft^2 ) SYSTEM_MEASUREMENTS= SI % ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% % % Mach number (non-dimensional, based on the free-stream values) MACH_NUMBER= 2.0 % % Reynolds number (non-dimensional, based on the free-stream values) REYNOLDS_NUMBER= 46.5E6 % Reynolds length (1 m, 1 inch by default) REYNOLDS_LENGTH= 1.0 % % Angle of attack (degrees) AOA= 0.0 % % Side-slip angle (degrees) SIDESLIP_ANGLE= 0.0 % % Free-stream pressure (101325.0 N/m^2 by default, only Euler flows) FREESTREAM_PRESSURE= 101325.0 % % Free-stream temperature (288.15 K by default) FREESTREAM_TEMPERATURE= 300.0 % --------------------------- VISCOSITY MODEL ---------------------------------% % % Viscosity model (SUTHERLAND, CONSTANT_VISCOSITY). VISCOSITY_MODEL= CONSTANT_VISCOSITY % ---------------------- REFERENCE VALUE DEFINITION ---------------------------% % % Reference origin for moment computation REF_ORIGIN_MOMENT_X = 0.25 REF_ORIGIN_MOMENT_Y = 0.00 REF_ORIGIN_MOMENT_Z = 0.00 % % Reference length for pitching, rolling, and yawing non-dimensional moment REF_LENGTH= 1.0 % % Reference area for force coefficients (0 implies automatic calculation) REF_AREA= 1.0 % -------------------- BOUNDARY CONDITION DEFINITION --------------------------% % % Navier-Stokes (no-slip), constant heat flux wall marker(s) (NONE = no marker) % Format: ( marker name, constant heat flux (J/m^2), ... ) MARKER_HEATFLUX= ( Wall, 0 ) % % Marker of the far field (0 implies no marker) MARKER_FAR= ( FarField ) % % Supersonic inlet boundary marker(s) (NONE = no marker) % Total Conditions: (inlet marker, temperature, static pressure, velocity_x, % velocity_y, velocity_z, ... ), i.e. all variables specified. MARKER_SUPERSONIC_INLET= ( Inlet, 300.0, 100000.0, 686.4, 0.0, 0.0 ) % % Outlet boundary marker(s) (NONE = no marker) % Format: ( outlet marker, back pressure (static), ... ) MARKER_OUTLET= ( Outlet, 10000.0 ) % % Marker(s) of the surface to be plotted or designed MARKER_PLOTTING= ( Outlet ) % % Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated MARKER_MONITORING= ( Wall ) % ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% % % Numerical method for spatial gradients (GREEN_GAUSS, LEAST_SQUARES, % WEIGHTED_LEAST_SQUARES) NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES % % Courant-Friedrichs-Lewy condition of the finest grid CFL_NUMBER= 5.0 % % Adaptive CFL number (NO, YES) CFL_ADAPT= NO % % Parameters of the adaptive CFL number (factor down, factor up, CFL min value, % CFL max value ) CFL_ADAPT_PARAM= ( 0.1, 2.0, 5.0, 1e10 ) % % Runge-Kutta alpha coefficients RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 ) % % Number of total iterations ITER= 10000 % % Linear solver for the implicit formulation (BCGSTAB, FGMRES) LINEAR_SOLVER= FGMRES % % Preconditioner of the Krylov linear solver (ILU, JACOBI, LINELET, LU_SGS) LINEAR_SOLVER_PREC= ILU % % Min error of the linear solver for the implicit formulation LINEAR_SOLVER_ERROR= 1E-6 % % Max number of iterations of the linear solver for the implicit formulation LINEAR_SOLVER_ITER= 20 % -------------------------- MULTIGRID PARAMETERS -----------------------------% % % Multi-Grid Levels (0 = no multi-grid) MGLEVEL= 0 % % Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE) MGCYCLE= W_CYCLE % % Multi-grid pre-smoothing level MG_PRE_SMOOTH= ( 1, 2, 3, 3 ) % % Multi-grid post-smoothing level MG_POST_SMOOTH= ( 0, 0, 0, 0 ) % % Jacobi implicit smoothing of the correction MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 ) % % Damping factor for the residual restriction MG_DAMP_RESTRICTION= 1.0 % % Damping factor for the correction prolongation MG_DAMP_PROLONGATION= 1.0 % -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% % % Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, % TURKEL_PREC, MSW) CONV_NUM_METHOD_FLOW= JST % % Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations. % Required for 2nd order upwind schemes (NO, YES) MUSCL_FLOW= YES % % Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG, % BARTH_JESPERSEN, VAN_ALBADA_EDGE) SLOPE_LIMITER_FLOW= VENKATAKRISHNAN % % Coefficient for the limiter (smooth regions) VENKAT_LIMITER_COEFF= 0.006 % % 2nd and 4th order artificial dissipation coefficients JST_SENSOR_COEFF= ( 0.5, 0.02 ) % % Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) TIME_DISCRE_FLOW= EULER_IMPLICIT % --------------------------- CONVERGENCE PARAMETERS --------------------------% % % Convergence criteria (CAUCHY, RESIDUAL) CONV_FIELD= RMS_DENSITY % % Min value of the residual (log10 of the residual) CONV_RESIDUAL_MINVAL= -24 % % Start convergence criteria at iteration number CONV_STARTITER= 10 % % Number of elements to apply the criteria CONV_CAUCHY_ELEMS= 100 % % Epsilon to control the series convergence CONV_CAUCHY_EPS= 1E-10 % -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------% % % Convective numerical method (SCALAR_UPWIND) CONV_NUM_METHOD_TURB= SCALAR_UPWIND % % Time discretization (EULER_IMPLICIT) TIME_DISCRE_TURB= EULER_IMPLICIT % % Reduction factor of the CFL coefficient in the turbulence problem CFL_REDUCTION_TURB= 1.0 % ------------------------- INPUT/OUTPUT INFORMATION --------------------------% % % Mesh input file MESH_FILENAME= final.su2 % % Mesh input file format (SU2, CGNS, NETCDF_ASCII) MESH_FORMAT= SU2 % % Mesh output file MESH_OUT_FILENAME= mesh_out.su2 % % Restart flow input file SOLUTION_FILENAME= solution_flow.dat % % Restart adjoint input file SOLUTION_ADJ_FILENAME= solution_adj.dat % % Output tabular format (CSV, TECPLOT) TABULAR_FORMAT= CSV % % Output file convergence history (w/o extension) CONV_FILENAME= history % % Output file restart flow RESTART_FILENAME= restart_flow.dat % % Output file restart adjoint RESTART_ADJ_FILENAME= restart_adj.dat % % Output file flow (w/o extension) variables VOLUME_FILENAME= flow % % Output file adjoint (w/o extension) variables VOLUME_ADJ_FILENAME= adjoint % % Output objective function gradient (using continuous adjoint) GRAD_OBJFUNC_FILENAME= of_grad.dat % % Output file surface flow coefficient (w/o extension) SURFACE_FILENAME= surface_flow % % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % % % Screen output SCREEN_OUTPUT=(INNER_ITER, WALL_TIME, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) % ----------------------- DESIGN VARIABLE PARAMETERS --------------------------% % % % Kind of deformation (NO_DEFORMATION, SCALE_GRID, TRANSLATE_GRID, ROTATE_GRID, % FFD_SETTING, FFD_NACELLE, % FFD_CONTROL_POINT, FFD_CAMBER, FFD_THICKNESS, FFD_TWIST % FFD_CONTROL_POINT_2D, FFD_CAMBER_2D, FFD_THICKNESS_2D, % FFD_TWIST_2D, HICKS_HENNE, SURFACE_BUMP, SURFACE_FILE) DV_KIND= SCALE_GRID % % - NO_DEFORMATION ( 1.0 ) % - TRANSLATE_GRID ( x_Disp, y_Disp, z_Disp ), as a unit vector % - ROTATE_GRID ( x_Orig, y_Orig, z_Orig, x_End, y_End, z_End ) axis, DV_VALUE in deg. % - SCALE_GRID ( 1.0 ) DV_PARAM= ( 1.0 ) % % Value of the deformation DV_VALUE= 10.0 |
|
December 22, 2021, 17:20 |
|
#2 |
Senior Member
Wally Maier
Join Date: Apr 2019
Posts: 123
Rep Power: 7 |
Hi BarisBicakci,
I would suggest changing the MARKER_PLOTTING= ( Wall ). As for numerical schemes, JST will be suitable to reach a converged state. However, schemes like the AUSM/SLAU family tend be better in higher speed flow. |
|
Tags |
intake aerodynamics, internal flow, su2, supersonic aircraft, supersonic flow |
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
[ANSYS Meshing] Air flow through intake manifold | zscheck | ANSYS Meshing & Geometry | 5 | March 15, 2012 22:41 |
air bubble is disappear increasing time using vof | xujjun | CFX | 9 | June 9, 2009 08:59 |
Modelling BC for Air intake snorkel of automobile | Piyush | FLUENT | 1 | May 18, 2006 06:36 |
designing an air intake under gambit | joseph guaragna | FLUENT | 0 | November 20, 2001 07:21 |
incompressible air flow in air intake system | reza besharati | Main CFD Forum | 4 | June 4, 2001 21:23 |