CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home >

CFD Journal Feeds

Annual Review of Fluid Mechanics top

► Large-Scale Eddy-Mean Flow Interaction in the Earth's Extratropical Atmosphere
  19 Jan, 2024

Large-scale circulation of the atmosphere in the Earth's extratropics is dominated by eddies, eastward (westerly) zonal winds, and their interaction. Eddies not only bring about weather variabilities but also help maintain the average state of climate. In recent years, our understanding of how large-scale eddies and mean flows interact in the extratropical atmosphere has advanced significantly due to new dynamical constraints on finite-amplitude eddies and the related eddy-free reference state. This article reviews the theoretical foundations for finite-amplitude Rossby wave activity and related concepts. Theory is then applied to atmospheric data to elucidate how angular momentum is redistributed by the generation, transmission, and dissipation of Rossby waves and to reveal how an anomalously large wave event such as atmospheric blocking may arise from regional eddy-mean flow interaction.

► Interfacial Dynamics Pioneer Stephen H. Davis (1939–2021)
  19 Jan, 2024

Stephen H. Davis (1939–2021) was an applied mathematician, fluid dynamicist, and materials scientist who lead the field in his contributions to interfacial dynamics, thermal convection, thin films, and solidification for over 50 years. Here, we briefly review his personal and professional life and some of his most significant contributions to the field.

► Fluid Dynamics of Airtanker Firefighting
  19 Jan, 2024

Airtanker firefighting is the most spectacular tool used to fight wildland fires. However, it employs a rudimentary large-scale spraying technology operating at a high speed and a long distance from the target. This review gives an overview of the fluid dynamics processes that govern this practice, which are characterized by rich and varied physical phenomena. The liquid column penetration in the air, its large-scale fragmentation, and an intense surface atomization give shape to the rainfall produced by the airtanker and the deposition of the final product on the ground. The cloud dynamics is controlled by droplet breakup, evaporation, and wind dispersion. The process of liquid deposition onto the forest canopy is full of open questions of great interest for rainfall retention in vegetation. Of major importance, but still requiring investigation, is the role of the complex non-Newtonian viscoelastic and shear-thinning behavior of the retardant dropped to stop the fire propagation. The review describes the need for future research devoted to the subject.

► The Early Days and Rise of Turbulence Simulation
  19 Jan, 2024

This review highlights major developments and milestones during the early days of numerical simulation of turbulent flows and its use to increase our understanding of turbulence phenomena. The period covered starts with the first simulations of decaying homogeneous isotropic turbulence in 1971–1972 and ends about 25 years later. Some earlier history of the progress in weather prediction is included if relevant. Only direct simulation, in which all scales of turbulence are accounted for explicitly, and large-eddy simulation, in which the effect of the smaller scales is modeled, are discussed. The method by which all scales are modeled, Reynolds-averaged Navier–Stokes, is not covered.

► Multiscale Velocity Gradients in Turbulence
  19 Jan, 2024

Understanding and predicting turbulent flow phenomena remain a challenge for both theory and applications. The nonlinear and nonlocal character of small-scale turbulence can be comprehensively described in terms of the velocity gradients, which determine fundamental quantities like dissipation, enstrophy, and the small-scale topology of turbulence. The dynamical equation for the velocity gradient succinctly encapsulates the nonlinear physics of turbulence; it offers an intuitive description of a host of turbulence phenomena and enables establishing connections between turbulent dynamics, statistics, and flow structure. The consideration of filtered velocity gradients enriches this view to express the multiscale aspects of nonlinearity and flow structure in a formulation directly applicable to large-eddy simulations. Driven by theoretical advances together with growing computational and experimental capabilities, recent activities in this area have elucidated key aspects of turbulence physics and advanced modeling capabilities.

► Flows Over Rotating Disks and Cones
  19 Jan, 2024

Rotating-disk flows were first considered by von Kármán in a seminal paper in 1921, where boundary layers in general were discussed and, in two of the nine sections, results for the laminar and turbulent boundary layers over a rotating disk were presented. It was not until in 1955 that flow visualization discovered the existence of stationary cross-flow vortices on the disk prior to the transition to turbulence. The rotating disk can be seen as a special case of rotating cones, and recent research has shown that broad cones behave similarly to disks, whereas sharp cones are susceptible to a different type of instability. Here, we provide a review of the major developments since von Kármán's work from 100 years ago, regarding instability, transition, and turbulence in the boundary layers, and we include some analysis not previously published.

► Bubble Plumes in Nature
  19 Jan, 2024

Bubble plumes are ubiquitous in nature. Instances in the natural world include the release of methane and carbon dioxide from the seabed or the bottom of a lake and from a subsea oil well blowout. This review describes the dynamics of bubble plumes and their various spreading patterns in the surrounding environment. We explore how the motion of the plume is affected by the density stratification in the external environment, as well as by internal processes of dissolution of the bubbles and chemical reaction. We discuss several examples, such as natural disasters, global warming, and fishing techniques used by some whales and dolphins.

► Turbulent Drag Reduction by Streamwise Traveling Waves of Wall-Normal Forcing
  19 Jan, 2024

We review some fundamentals of turbulent drag reduction and the turbulent drag reduction techniques using streamwise traveling waves of blowing/suction from the wall and wall deformation. For both types of streamwise traveling wave controls, their significant drag reduction capabilities have been well confirmed by direct numerical simulation at relatively low Reynolds numbers. The drag reduction mechanisms by these streamwise traveling waves are considered to be the combination of direct effects due to pumping and indirect effects of the attenuation of velocity fluctuations due to reduced receptivity. Prediction of their drag reduction capabilities at higher Reynolds numbers and attempts at experimental validation are also intensively ongoing toward their practical implementation.

► Building Ventilation: The Consequences for Personal Exposure
  19 Jan, 2024

Ventilation is central to human civilization. Without it, the indoor environment rapidly becomes uncomfortable or dangerous, but too much ventilation can be expensive. We spend much of our time indoors, where we are exposed to pollutants and can be infected by airborne diseases. Ventilation removes pollution and bioaerosols from indoor sources but also brings in pollution from outdoors. To determine an appropriate level of ventilation and an appropriate way of providing it, one must understand that the needs for ventilation extend beyond simple thermal comfort; the quality of indoor air is at least as important. An effective ventilation system will remove unwanted contaminants, whether generated within the space by activities or by the simple act of breathing, and ensure that the ventilation system does not itself introduce or spread contaminants from elsewhere. This review explores how ventilation flows in buildings influence personal exposure to indoor pollutants and the spread of airborne diseases.

► Gas Microfilms in Droplet Dynamics: When Do Drops Bounce?
  19 Jan, 2024

In the last ten years, advances in experimental techniques have enabled remarkable discoveries of how the dynamics of thin gas films can profoundly influence the behavior of liquid droplets. Drops impacting onto solids can skate on a film of air so that they bounce off solids. For drop–drop collisions, this effect, which prevents coalescence, has been long recognized. Notably, the precise physical mechanisms governing these phenomena have been a topic of intense debate, leading to a synergistic interplay of experimental, theoretical, and computational approaches. This review attempts to synthesize our knowledge of when and how drops bounce, with a focus on () the unconventional microscale and nanoscale physics required to predict transitions to/from merging and () the development of computational models. This naturally leads to the exploration of an array of other topics, such as the Leidenfrost effect and dynamic wetting, in which gas films also play a prominent role.

Computers & Fluids top

► Numerical investigation about effects of flow sediment-storage variation on capacity modelling of morphological evolutions
    

Publication date: 30 May 2024

Source: Computers & Fluids, Volume 276

Author(s): Peng Hu, Mobassir Azam, Wei Li, Linwei Dai, Hongyang Zhao

► Validation of a Eulerian–Lagrangian numerical algorithm for simulating ultra-coarse particles transported in horizontal and vertical hydraulic pipes
    

Publication date: 30 May 2024

Source: Computers & Fluids, Volume 276

Author(s): Ruijie Zhao, Yuanhang Zhang, Xuzhen Zhang, Xikun Wang

► A GRP-based tangential effects preserving, high resolution and efficient ghost fluid method for the simulation of two-dimensional multi-medium compressible flows
    

Publication date: 30 May 2024

Source: Computers & Fluids, Volume 276

Author(s): Zhixin Huo, Zupeng Jia

► A new compact scheme-based Lax–Wendroff method for high fidelity simulations
    

Publication date: 30 May 2024

Source: Computers & Fluids, Volume 276

Author(s): V.K. Suman, P. Sundaram, Soumyo Sengupta, Tapan K. Sengupta

► A hybrid discrete exterior calculus and finite difference method for anelastic convection in spherical shells
    

Publication date: Available online 25 April 2024

Source: Computers & Fluids

Author(s): Hamid Hassan Khan, Pankaj Jagad, Matteo Parsani

► Rigorous benchmarking of an iterative IBM solver by comparison to body-fitted mesh results
    

Publication date: Available online 26 April 2024

Source: Computers & Fluids

Author(s): Lianxia Li, Michael Stoellinger, Maysam Mousaviraad

► A data-driven multiscale model for reactive wetting simulations
    

Publication date: 30 May 2024

Source: Computers & Fluids, Volume 276

Author(s): Jaideep Ray, Jeffrey S. Horner, Ian Winter, David J. Kemmenoe, Edward R. Arata, Michael Chandross, Scott A. Roberts, Anne M. Grillet

► Investigation of radial basis function dynamic mesh method with rotation correction based on adaptive background mesh
    

Publication date: 30 May 2024

Source: Computers & Fluids, Volume 276

Author(s): Han Tang, Guannan Zheng, Yuchen Zhang

► Computable turbulence modeling of laminar-turbulent transition characterized boundary layer flows with the aid of artificial neural network
    

Publication date: 30 May 2024

Source: Computers & Fluids, Volume 276

Author(s): Bing Cui, Lei Wu, Zuoli Xiao, Yu Liu

► Modeling fluid–structure interaction using smoothed particle hydrodynamics and constitutively informed particle dynamics
    

Publication date: 30 May 2024

Source: Computers & Fluids, Volume 276

Author(s): Phanindra Paravastu, Srikanth Vedantam

International Journal of Computational Fluid Dynamics top

► A Direct Implicit Discretization Approach for Arbitrary Non-conformal Interface by Using a Virtual Cell
  26 Apr, 2024
.
► Droplet Injection for Multiphase Rainfall Simulations on Dynamically Refined Mesh for Effective Interface Capturing
  17 Apr, 2024
.
► A Level Set-Based Solver for Two-Phase Incompressible Flows: Extension to Magnetic Fluids
    5 Apr, 2024
.
► Experimental and Numerical Investigation of Flow Characteristics Around Complex Bridge Piers in Different Geometries
    2 Apr, 2024
.
► Multi-Fidelity Uncertainty Propagation Approach for Multi-Dimensional Correlated Flow Field Responses
  21 Mar, 2024
Volume 37, Issue 5, June 2023, Page 414-427
.
► Prediction of Wind-Pressure Coefficients on Circular Elevated-Tanks Through the Novel CFD-ANN Model for Various Building-Interference Circumstances
  13 Mar, 2024
Volume 37, Issue 5, June 2023, Page 367-394
.
► HALO3D: An All-Mach Approach to Hypersonic Flows Simulation, Part II
  23 Feb, 2024
Volume 37, Issue 5, June 2023, Page 333-366
.
► An Accurate and Robust Line-Hybrid Method for Hypersonic Heating Predictions
  22 Jan, 2024
Volume 37, Issue 5, June 2023, Page 395-413
.
► Erratum
  18 Aug, 2014
.

International Journal for Numerical Methods in Fluids top

► An extended discontinuous Galerkin shock tracking method
  17 Apr, 2024
An extended discontinuous Galerkin shock tracking method

In this work by Jakob Vandergrift* and Florian Kummer, “an extended discontinuous Galerkin shock tracking method” for PDEs with discontinuities is proposed and successfully applied to 2D problems showing promising results. At the heart of the method a level set is employed, implicitly enrichening the approximation space, allowing for accurate representation of solution discontinuities within cut-cells and without requiring additional stabilization. The shock-fitted level set and the PDE solution are computed simultaneously using an optimization approach.


Abstract

In this paper, we introduce a novel high-order shock tracking method and provide a proof of concept. Our method leverages concepts from implicit shock tracking and extended discontinuous Galerkin methods, primarily designed for solving partial differential equations featuring discontinuities. To address this challenge, we solve a constrained optimization problem aiming at accurately fitting the zero iso-contour of a level set function to the discontinuities. Additionally, we discuss various robustness measures inspired by both numerical experiments and existing literature. Finally, we showcase the capabilities of our method through a series of two-dimensional problems, progressively increasing in complexity.

► A modified forcing approach in the Rothman–Keller method for simulations of flow phenomena at low capillary numbers
  11 Apr, 2024
A modified forcing approach in the Rothman–Keller method for simulations of flow phenomena at low capillary numbers

This work proposes a modified forcing term in the Rothman–Keller (RK) model to minimize spurious velocities and provide more accurate results at lower capillary numbers. The current approach converges quickly and shows parallel flow accurately for all the capillary numbers as opposed to the traditional RK model (Guo approach). Leakage is also successfully captured by the current approach for most of the capillary numbers, which wasn't the case for Volume of Fluid and phase field methods.


Abstract

The lattice-Boltzmann method (LBM) is becoming increasingly popular for simulating multi-phase flows on the microscale because of its advantages in terms of computational efficiency. Many applications of the method are restricted to relatively simple geometries. When a more complex geometry is considered—circular and inclined microchannels—some important physical phenomena may not be accurately captured, especially at low capillary numbers. A Y-Y micro-fluidic channel, widely used for a range of applications, is an example of a more complex geometry. This work aims to capture the various flow phenomena, with an emphasis on parallel flow and leakage, using the Rothman–Keller (RK) model of the LBM. To this purpose, we modify the forcing term to implement the surface tension for use at low capillary numbers. We compare the simulation results of the RK model with and without the force modification with experiments, Volume of Fluid and the phase field method and observe that the modified forcing term is an improvement over the current RK model at low capillary numbers, and it also captures parallel flow and leakage more accurately than the other simulation techniques.

► Two‐ and three‐dimensional multiphase mesh‐free particle modeling of transitional landslide with μ(I) rheology
    8 Apr, 2024
Two- and three-dimensional multiphase mesh-free particle modeling of transitional landslide with μ(I) rheology

In the present study, describes the rheological transition from dry to wet sedimentary materials as a transition from shear thinning behavior to shear thickness behavior. This transition can clearly have a significant effect on saturated materials. In this study, a transition period is defined which the sliding materials are saturated. Although this period is constant, for each particle based on the time it reaches the initial water level, it is separately initialized.


Abstract

Landslides, which are the sources of most catastrophic natural disasters, can be subaerial (dry), submerged (underwater), or semi-submerged (transitional). Semi-submerged or transitional landslides occur when a subaerial landslide enters water and turns to submerged condition. Predicting the behavior of such a highly dynamic multi-phase granular flow system is challenging, mainly due to the water entry effects, such as wave impact and partial saturation (and resulted cohesion). The mesh-free particle methods, such as the moving particle semi-implicit (MPS) method, have proven their capabilities for the simulation of the highly dynamic multiphase systems. This study develops and evaluates a numerical model, based on the MPS particle method in combination with the μ(I) rheological model, to simulate the morphodynamic of the granular mass in semi-submerged landslides in two and three dimensions. An algorithm is developed to consider partial saturation (and resulting cohesion) during the water entry. Comparing the numerical results with the experimental measurements shows the ability of the proposed model to accurately reproduce the morphological evolution of the granular mass, especially at the moment of water entry.

► A two‐stage reliable computational scheme for stochastic unsteady mixed convection flow of Casson nanofluid
    8 Apr, 2024
A two-stage reliable computational scheme for stochastic unsteady mixed convection flow of Casson nanofluid

Researchers can incorporate uncertainties in computational fluid dynamics (CFD) that go beyond the inaccuracies caused by numerical discretization thanks to stochastic simulations. This study confirms the validity of current stochastic modeling tools by providing examples of stochastic simulations in conjunction with numerical solutions for incompressible flows. A numerical technique for solving deterministic and stochastic models is developed in this work. Our approach employs the Euler-Maruyama method for stochastic modeling, representing a stochastic version of the third-order explicit-implicit scheme. For the deterministic model, the scheme is third-order accurate. The consistency and stability of the constructed scheme are provided in the mean square sense. The scheme is the predictor–corrector type that is built on two time levels. Moreover, a mathematical model of the Casson nanofluid flow with variable thermal conductivity is given with the effect of the chemical reaction. The appropriate transformations are used to condense the set of partial differential equations (PDEs) down to one that is dimensionless. The scheme is applied for the deterministic and stochastic models of dimensionless flow problems. The velocity profile's deterministic and stochastic behavior are shown using contour plots. Results show that growing values of the thermal mixed convection parameter enhance the velocity profile. This article presents the progress made in stochastic computational fluid dynamics (SCFD) and highlights the energy-related aspects of our discoveries. Our computational approach and stochastic modeling techniques provide new insights into the energy properties of Casson nanofluid flow, specifically regarding the variability of thermal conductivity and chemical processes. Our objective is to clarify the complex interaction of these factors on energy dynamics. This article presents a contemporary summary of the latest SCFD advancements. Additionally, it highlights potential directions for future research and unresolved issues that require attention from the members of the field of computational mathematics.


Abstract

Researchers can incorporate uncertainties in computational fluid dynamics (CFD) that go beyond the inaccuracies caused by numerical discretization thanks to stochastic simulations. This study confirms the validity of current stochastic modeling tools by providing examples of stochastic simulations in conjunction with numerical solutions for incompressible flows. A numerical technique for solving deterministic and stochastic models is developed in this work. Our approach employs the Euler-Maruyama method for stochastic modeling, representing a stochastic version of the third-order explicit-implicit scheme. For the deterministic model, the scheme is third-order accurate. The consistency and stability of the constructed scheme are provided in the mean square sense. The scheme is the predictor–corrector type that is built on two time levels. Moreover, a mathematical model of the Casson nanofluid flow with variable thermal conductivity is given with the effect of the chemical reaction. The appropriate transformations are used to condense the set of partial differential equations (PDEs) down to one that is dimensionless. The scheme is applied for the deterministic and stochastic models of dimensionless flow problems. The velocity profile's deterministic and stochastic behavior are shown using contour plots. Results show that growing values of the thermal mixed convection parameter enhance the velocity profile. This article presents the progress made in stochastic computational fluid dynamics (SCFD) and highlights the energy-related aspects of our discoveries. Our computational approach and stochastic modeling techniques provide new insights into the energy properties of Casson nanofluid flow, specifically regarding the variability of thermal conductivity and chemical processes. Our objective is to clarify the complex interaction of these factors on energy dynamics. This article presents a contemporary summary of the latest SCFD advancements. Additionally, it highlights potential directions for future research and unresolved issues that require attention from the members of the field of computational mathematics.

► Unconditionally stable fully‐discrete finite element numerical scheme for active fluid model
    8 Apr, 2024
Unconditionally stable fully-discrete finite element numerical scheme for active fluid model

The second-order Gauge–Uzawa method is combined with the finite element method to solve the active fluid model with the fourth derivative term and strong nonlinear terms. A large number of numerical experiments show that the scheme not only has superior accuracy and efficiency, but also proves that it has good simulation effect through comparison with the laboratory results.


Abstract

In this paper, we propose a linear, decoupled, unconditionally stable fully-discrete finite element scheme for the active fluid model, which is derived from the gradient flow approach for an effective non-equilibrium free energy. The developed scheme is employed by an implicit-explicit treatment of the nonlinear terms and a second-order Gauge–Uzawa method for the decoupling of computations for the velocity and pressure. We rigorously prove the unique solvability and unconditional stability of the proposed scheme. Several numerical tests are presented to verify the accuracy, stability, and efficiency of the proposed scheme. We also simulate the self-organized motion under the various external body forces in 2D and 3D cases, including the motion direction of active fluid from disorder to order. Numerical results show that the scheme has a good performance in accurately capturing and handling the complex dynamics of active fluid motion.

► A sharp immersed method for electrohydrodynamic flows accompanied by charge evaporation
    8 Apr, 2024
A sharp immersed method for electrohydrodynamic flows accompanied by charge evaporation

An adaptive sharp immersed method is proposed to simulate electrohydrodynamic flows accompanied by ion evaporation. A splitting error-free iterative projection algorithm is used to solve the Navier–Stokes equations, and a robust iterative algorithm is used to address the surface charge transport. Our simulations captured the protrusion structure caused by charge evaporation and showed that charge evaporation can suppress the sharp development of Taylor cones at the ends of the drops.


Abstract

This article presents a sharp immersed method for simulating electrohydrodynamic (EHD) flows that involve charge evaporation. This well-known multi-scale, multi-physics problem is widely used in various fields, including industry and medicine. The method adopts a fully sharp model, where surface tension and Maxwell stress are treated as surface forces and free charges are concentrated on the zero thickness liquid-vacuum interface. Incorporating charge evaporation imposes strict restrictions on the time-step, as the rate of evaporation sharply increases with surface evolution. To overcome this challenge, an iterative algorithm that couples the electric field and surface charge density is proposed to obtain accurate results, even with significantly large time-steps. To mitigate the numerical residuals near the interface, which may introduce parasitic flows and cause numerical instability, an immersed interface method-based iterative projection method for the Navier–Stokes equations is proposed, in which a traction boundary condition involving multiple surface forces is imposed on the sharp interface. Numerical experiments were carried out, and the results show that the method is splitting-error-free and stable. The sharp immersed method is applied to simulate the electric-induced deformation of an ionic liquid drop with charge evaporation. The results indicate that charge evaporation can suppress the sharp development of Taylor cones at the ends of the drops. These findings have significant implications for the design and optimization of EHD systems in various applications.

► Development of a Fourier‐expansion based differential quadrature method with lattice Boltzmann flux solvers: Application to incompressible isothermal and thermal flows
    8 Apr, 2024
Development of a Fourier-expansion based differential quadrature method with lattice Boltzmann flux solvers: Application to incompressible isothermal and thermal flows

A Fourier-expansion based differential quadrature method (FDQ) with lattice Boltzmann flux solvers (LBFS) for simulating isothermal and thermal flows. The method possesses several merits such as simple formulation and implementation, easy boundary condition treatments and flexibility on curved geometries. Numerical experiments confirm the superior performance in terms of accuracy and efficiency compared with other high-order methods.


Abstract

This paper presents a high-order Fourier-expansion based differential quadrature method with isothermal and thermal lattice Boltzmann flux solvers (LBFS-FDQ and TLBFS-FDQ) for simulating incompressible flows. The numerical solution in the present method is approximated via trigonometric basis. Therefore, both periodic and non-periodic boundary conditions can be handled straightforwardly without the special treatments as required by polynomial-based differential quadrature methods. The incorporation of LBFS/TLBFS enables the present methods to efficiently simulated various types of flow problems on considerably coarse grids with spectral accuracy. The high-order accuracy, efficiency and competitiveness of the proposed method are comprehensively demonstrated through a wide selection of isothermal and thermal flow benchmarks.

► A finite element model for concentration polarization and osmotic effects in a membrane channel
    8 Apr, 2024
A finite element model for concentration polarization and osmotic effects in a membrane channel

A finite element model for the study of a channel with semi-permeable walls using the Nitsche method is presented. Several numerical experiments are performed for validation of the method. We show that our method accurately predicts the pressure drop from classical analytical models. Also, Nitsche's method allows obtaining accurate results on the membrane as long as it is discretized with an adequate number of elements. Discussion and comparison between different operational conditions are presented, where we observe that transmembrane pressure causes the most increase in average permeate flux


Abstract

In this article, we study a mathematical model that represents the concentration polarization and osmosis effects in a reverse osmosis cross-flow channel with dense membranes at some of its boundaries. The fluid is modeled using the Navier–Stokes equations and the solution-diffusion is used to impose the momentum balance on the membrane. The scheme consist of a conforming finite element method with the velocity–pressure formulation for the Navier–Stokes equations, together with a primal scheme for the convection–diffusion equations. The Nitsche's method is used to impose the permeability condition across the membrane. Several numerical experiments are performed to show the robustness of the method. The resulting model accurately replicates the analytical models and predicts similar results to previous works. It is found that the submerged configuration has the highest permeate production, but also has the greatest pressure loss of all three configurations studied.

► Assessment of implicit adaptive mesh‐free CFD modelling
    8 Apr, 2024
Assessment of implicit adaptive mesh-free CFD modelling

The paper shows results from an implicit meshless method suitable for the analysis of external aerodynamic flows. This research is using a cloud of points instead of cells, and several stencils are compared for the discretization of the flow equations, along with a least-squares method. Different adaptive refinement schemes are compared, and the results shows that a weighted pressure gradient metric was suitable for driving the adaptation process. With the tested stencils and given enough points in the cloud, the method was able to capture the formation on shocks on transonic aerofoils and wings, and delivered results of good accuracy.


Summary

This work presents details and assesses implicit and adaptive mesh-free CFD modelling approaches, to alleviate laborious mesh generation in modern CFD processes. A weighted-least-squares-based, mesh-free, discretisation scheme was first derived for the compressible RANS equations, and the implicit dual-time stepping was adopted for improved stability and convergence. A novel weight balancing concept was introduced to improve the mesh-free modelling on highly irregular point clouds. Automatic point cloud generations based on strand and level-set points were also discussed. A novel, polar selection approach, was also introduced to establish high-quality point collocations. The spatial accuracy and convergence properties were validated using 2D and 3D benchmark cases. The impact of irregular point clouds and various point collocation search methods were evaluated in detail. The proposed weight balancing and the polar selection approaches were found capable of improving the mesh-free modelling on highly irregular point clouds. The mesh-free flexibility was then exploited for adaptive modelling. Various adaptation strategies were assessed using simulations of an isentropic vortex, combining different point refinement mechanisms and collocation search methods. The mesh-free modelling was then successfully applied to transonic aerofoil simulations with automated point generation. A weighted pressure gradient metric prioritising high gradient regions with large point sizes was introduced to drive the adaptation. The mesh-free adaptation was found to effectively improve the shock resolution. The results highlight the potential of mesh-free methods in alleviating the meshing bottleneck in modern CFD.

► Moving least‐squares aided finite element method: A powerful means to predict flow fields in the presence of a solid part
    8 Apr, 2024
Moving least-squares aided finite element method: A powerful means to predict flow fields in the presence of a solid part

Many physical and industrial problems comprise one or more moving parts, which change the flow domain during a process, such as lubrication and mixing. For such problems, we have suggested a new method, which uses a fixed background mesh to avoid the time-consuming task of boundary-fitted grid generation. The new technique, which is based on the finite element method, uses the moving least-squares interpolation functions, where the solid and fluid meet each other in the flow domain.


Abstract

With the assistance of the moving least-squares (MLS) interpolation functions, a two-dimensional finite element code is developed to consider the effects of a stationary or moving solid body in a flow domain. At the same time, the mesh or grid is independent of the shape of the solid body. We achieve this goal in two steps. In the first step, we use MLS interpolants to enhance the pressure (P) and velocity (V) shape functions. By this means, we capture different discontinuities in a flow domain. In our previous publications, we have named this technique the PVMLS method (pressure and velocity shape functions enhanced by the MLS interpolants) and described it thoroughly. In the second step, we modify the PVMLS method (the M-PVMLS method) to consider the effect of a solid part(s) in a flow domain. To evaluate the new method's performance, we compare the results of the M-PVMLS method with a finite element code that uses boundary-fitted meshes.

Journal of Computational Physics top

► A high-order diffused-interface approach for two-phase compressible flow simulations using a discontinuous Galerkin framework
    

Publication date: 1 July 2024

Source: Journal of Computational Physics, Volume 508

Author(s): Niccolò Tonicello, Matthias Ihme

► Generalized optimal transport and mean field control problems for reaction-diffusion systems with high-order finite element computation
    

Publication date: 1 July 2024

Source: Journal of Computational Physics, Volume 508

Author(s): Guosheng Fu, Stanley Osher, Will Pazner, Wuchen Li

► Positional embeddings for solving PDEs with evolutional deep neural networks
    

Publication date: 1 July 2024

Source: Journal of Computational Physics, Volume 508

Author(s): Mariella Kast, Jan S. Hesthaven

► A non-oscillatory finite volume scheme using a weighted smoothed reconstruction
    

Publication date: 1 July 2024

Source: Journal of Computational Physics, Volume 508

Author(s): Davoud Mirzaei, Navid Soodbakhsh

► Learning stochastic dynamical system via flow map operator
    

Publication date: 1 July 2024

Source: Journal of Computational Physics, Volume 508

Author(s): Yuan Chen, Dongbin Xiu

► Decoding mean field games from population and environment observations by Gaussian processes
    

Publication date: 1 July 2024

Source: Journal of Computational Physics, Volume 508

Author(s): Jinyan Guo, Chenchen Mou, Xianjin Yang, Chao Zhou

► Efficient particle control in systems with large density gradients
    

Publication date: 1 July 2024

Source: Journal of Computational Physics, Volume 508

Author(s): Evan K. Massaro, Michael A. Gallis, Nicolas G. Hadjiconstantinou

► Energy-conserving neural network for turbulence closure modeling
    

Publication date: 1 July 2024

Source: Journal of Computational Physics, Volume 508

Author(s): T. van Gastelen, W. Edeling, B. Sanderse

► Unified approach to artificial compressibility and local low Mach number preconditioning
    

Publication date: 1 July 2024

Source: Journal of Computational Physics, Volume 508

Author(s): Minsoo Kim, Seungsoo Lee

► SPRAY: A smoothed particle radiation hydrodynamics code for modeling high intensity laser-plasma interactions
    

Publication date: 1 July 2024

Source: Journal of Computational Physics, Volume 508

Author(s): Min Ki Jung, Hakhyeon Kim, Su-San Park, Eung Soo Kim, Yong-Su Na, Sang June Hahn

Journal of Turbulence top

► Spectral energy transfer analysis of a forced homogeneous isotropic turbulence using triple decomposition of velocity gradient tensor
  22 Mar, 2024
Volume 25, Issue 1-3, January - March 2024, Page 125-143
.
► Multi-spatial scale and multi-frequency resolution Proper Orthogonal Decomposition for patterns of wall-streamwise pressure gradient fluctuation of impinging jets
  21 Mar, 2024
Volume 25, Issue 1-3, January - March 2024, Page 83-104
.
► Effects of axial distance on flow behaviours of continuous jet impinging on a flat surface using a finite confined nozzle
  19 Mar, 2024
Volume 25, Issue 1-3, January - March 2024, Page 105-124
.
► Laminar to turbulent transitions of pipe flows by resonances of natural frequencies of components of test sections
  23 Feb, 2024
Volume 25, Issue 1-3, January - March 2024, Page 62-82
.
► Variational calculus in hybrid turbulence transport models with passive scalar
  25 Jan, 2024
Volume 25, Issue 1-3, January - March 2024, Page 16-61
.
► Exciting turbulence in an elongated domain
    9 Jan, 2024
Volume 25, Issue 1-3, January - March 2024, Page 1-15
.

Physics of Fluids top

► A sharp interface immersed edge-based smoothed finite element method with extended fictitious domain scheme
  17 Apr, 2023
Physics of Fluids, Volume 35, Issue 4, April 2023.
This paper proposes a versatile and robust immersed edge-based smoothed finite element method with the mass conservation algorithm (IESFEM/Mass) to solve partitioned fluid–structure interaction (FSI). A gradient smoothing technique was used to solve the system governing equations, which can improve the calculated capability of the linear triangular elements in two phases. Based on the quadratic sharp interface representation of immersed boundary, an extended fictitious domain constructed by a least squares method approximately corrected the residual flux error. The compatibility for boundary conditions on moving interfaces was satisfied, thus eliminating spurious oscillations. The results from all numerical examples were consistent with those from the existing experiments and published numerical solutions. Furthermore, the present divergence-free vector field had a faster-converged rate in the flow velocity, pressure, and FSI force. Even if in distorted meshes, the proposed algorithm maintained a stable accuracy improvement. The aerodynamics of one- and two-winged flapping motions in insect flight has been investigated through the IESFEM/Mass. It can be seen that the wing–wake interaction mechanism is a vital factor affecting the lift. The applicability of the present method in the biological FSI scenario was also well-demonstrated.
► Enhanced and reduced solute transport and flow strength in salt finger convection in porous media
  17 Apr, 2023
Physics of Fluids, Volume 35, Issue 4, April 2023.
We report a pore-scale numerical study of salt finger convection in porous media, with a focus on the influence of the porosity in the non-Darcy regime, which has received little attention in previous research. The numerical model is based on the lattice Boltzmann method with a multiple-relaxation-time scheme and employs an immersed boundary method to describe the fluid–solid interaction. The simulations are conducted in a two-dimensional, horizontally periodic domain with an aspect ratio of 4, and the porosity [math] is varied from 0.7 to 1, while the solute Rayleigh number [math] ranges from [math] to [math]. Our results show that, for all explored [math], solute transport first enhances unexpectedly with decreasing [math] and then decreases when [math] is smaller than a [math]-dependent value. On the other hand, while the flow strength decreases significantly as [math] decreases at low [math], it varies weakly with decreasing [math] at high [math] and even increases counterintuitively for some porosities at moderate [math]. Detailed analysis of the salinity and velocity fields reveals that the fingered structures are blocked by the porous structure and can even be destroyed when their widths are larger than the pore scale, but become more ordered and coherent with the presence of porous media. This combination of opposing effects explains the complex porosity dependencies of solute transport and flow strength. The influence of porous structure arrangement is also examined, with stronger effects observed for smaller [math] and higher [math]. These findings have important implications for passive control of mass/solute transport in engineering applications.
► On the instability of the magnetohydrodynamic pipe flow subject to a transverse magnetic field
  17 Apr, 2023
Physics of Fluids, Volume 35, Issue 4, April 2023.
The linear stability of a fully developed liquid–metal magnetohydrodynamic pipe flow subject to a transverse magnetic field is studied numerically. Because of the lack of axial symmetry in the mean velocity profile, we need to perform a BiGlobal stability analysis. For that purpose, we develop a two-dimensional complex eigenvalue solver relying on a Chebyshev–Fourier collocation method in physical space. By performing an extensive parametric study, we show that in contrast to the Hagen–Poiseuille flow known to be linearly stable for all Reynolds numbers, the magnetohydrodynamic pipe flow with transverse magnetic field is unstable to three-dimensional disturbances at sufficiently high values of the Hartmann number and wall conductance ratio. The instability observed in this regime is attributed to the presence of velocity overspeed in the so-called Roberts layers and the corresponding inflection points in the mean velocity profile. The nature and characteristics of the most unstable modes are investigated, and we show that they vary significantly depending on the wall conductance ratio. A major result of this paper is that the global critical Reynolds number for the magnetohydrodynamic pipe flow with transverse magnetic field is Re = 45 230, and it occurs for a perfectly conducting pipe wall and the Hartmann number Ha = 19.7.
► The turbulence development at its initial stage: A scenario based on the idea of vortices decay
  17 Apr, 2023
Physics of Fluids, Volume 35, Issue 4, April 2023.
In this paper, a model of the development of a quantum turbulence in its initial stage is proposed. The origin of the turbulence in the suggested model is the decay of vortex loops with an internal structure. We consider the initial stage of this process, before an equilibrium state is established. As result of our study, the density matrix of developing turbulent flow is calculated. The quantization scheme of the classical vortex rings system is based on the approach proposed by the author earlier.
► Interstage difference and deterministic decomposition of internal unsteady flow in a five-stage centrifugal pump as turbine
  17 Apr, 2023
Physics of Fluids, Volume 35, Issue 4, April 2023.
A five-stage centrifugal pump is utilized to investigate the interstage flow characteristics of the multistage centrifugal pump as turbine (PAT). The simulation results of performance are verified by comparing with the experimental results. Owing to the distinct structural attributes, significant differences in flow occur between the first stage and the other stages of the multistage PAT. To enhance the understanding of these disparities and explore their repercussions, this study focuses on analyzing the flow within the impellers in the first and second stages by a deterministic analysis. The main conclusions are as follows: The discrepancies in the inflow conditions are the major reason for the dissimilarities in the flow of impellers between stages. The impact loss generated by the misalignment between the positive guide vane outlet angle and the impeller inlet angle leads to flow deviation between impeller passages and affects the internal flow pattern. The unsteadiness under low flow rates is mostly produced by the spatial gradient of the blade-to-blade nonuniformities, which is relevant to the relative position between blades and the positive guide vanes. At high flow rates, especially in the second-stage impeller, the pure unsteady term is the primary cause of flow unsteadiness as a result of the flow separation induced by interactions between the blades and the positive guide vanes. This study can provide some references for the practical operation and performance optimization of the multistage PATs in the future.
► Effect of gravity on phase transition for liquid–gas simulations
  17 Apr, 2023
Physics of Fluids, Volume 35, Issue 4, April 2023.
Direct simulations of phase-change and phase-ordering phenomena are becoming more common. Recently, qualitative simulations of boiling phenomena have been undertaken by a large number of research groups. One seldom discussed limitation is that large values of gravitational forcing are required to simulate the detachment and rise of bubbles formed at the bottom surface. The forces are typically so large that neglecting the effects of varying pressure in the system becomes questionable. In this paper, we examine the effect of large pressure variations induced by gravity using pseudopotential lattice Boltzmann simulations. These pressure variations lead to height dependent conditions for phase coexistence and nucleation of either gas or liquid domains. Because these effects have not previously been studied in the context of these simulation methods, we focus here on the phase stability in a one-dimensional system, rather than the additional complexity of bubble or droplet dynamics. Even in this simple case, we find that the different forms of gravitational forces employed in the literature lead to qualitatively different phenomena, leading to the conclusion that the effects of gravity induced pressure variations on phase-change phenomena should be very carefully considered when trying to advance boiling and cavitation as well as liquefaction simulations to become quantitative tools.
► Entrapment and mobilization dynamics during the flow of viscoelastic fluids in natural porous media: A micro-scale experimental investigation
  17 Apr, 2023
Physics of Fluids, Volume 35, Issue 4, April 2023.
Capillary desaturation process was investigated as a function of wetting phase rheological signatures during the injection of Newtonian and non-Newtonian fluids. Two sets of two-phase imbibition flow experiments were conducted on a water-wet sandstone core sample using brine and viscoelastic polymer solutions. During the experiments, a high-resolution micro-computed tomography scanner was employed to directly map pore-level fluid occupancies within the pore space. The results of the experiments revealed that at a given capillary number, the viscoelastic polymer was more efficient than the brine in recovering the non-wetting oil phase. At low capillary numbers, this is attributed to the improved accessibility of the viscoelastic polymer solution to the entrance of pore elements, which suppressed snap-off events and allowed more piston-like and cooperative pore-body filling events to contribute to oil displacement. For intermediate capillary numbers, the onset of elastic turbulence caused substantial desaturation, while at high capillary numbers, the superimposed effects of higher viscous and elastic forces further improved the mobilization of the trapped oil ganglia by the viscoelastic polymer. In the waterflood, however, the mobilization of oil globules was the governing recovery mechanism, and the desaturation process commenced only when the capillary number reached a threshold value. These observations were corroborated with the pore-level fluid occupancy maps produced for the brine and viscoelastic polymer solutions during the experiments. Furthermore, at the intermediate and high capillary numbers, the force balance and pore-fluid occupancies suggested different flow regimes for the non-Newtonian viscoelastic polymer. These regions are categorized in this study as elastic-capillary- and viscoelastic-dominated flow regimes, different from viscous-capillary flow conditions that are dominant during the flow of Newtonian fluids. Moreover, we have identified novel previously unreported pore-scale displacement events that take place during the flow of viscoelastic fluids in a natural heterogeneous porous medium. These events, including coalescence, fragmentation, and re-entrapment of oil ganglia, occurred before the threshold of oil mobilization was reached under the elastic-capillary-dominated flow regime. In addition, we present evidence for lubrication effects at the pore level due to the elastic properties of the polymer solution. Furthermore, a comparison of capillary desaturation curves generated for the Newtonian brine and non-Newtonian viscoelastic polymer revealed that the desaturation process was more significant for the viscoelastic polymer than for the brine. Finally, the analysis of trapped oil clusters showed that the ganglion size distribution depends on both the capillary number and the rheological properties of fluids.
► Impact of wettability on interface deformation and droplet breakup in microcapillaries
  17 Apr, 2023
Physics of Fluids, Volume 35, Issue 4, April 2023.
The objective of this research paper is to relate the influence of dynamic wetting in a liquid/liquid/solid system to the breakup of emulsion droplets in capillaries. Therefore, modeling and simulation of liquid/liquid flow through a capillary constriction have been performed with varying dynamic contact angles from highly hydrophilic to highly hydrophobic. Advanced advection schemes with geometric interface reconstruction (isoAdvector) are incorporated for high interface advection accuracy. A sharp surface tension force model is used to reduce spurious currents originating from the numerical treatment and geometric reconstruction of the surface curvature at the interface. Stress singularities from the boundary condition at the three-phase contact line are removed by applying a Navier-slip boundary condition. The simulation results illustrate the strong dependency of the wettability and the contact line and interface deformation.
► Drag increase and turbulence augmentation in two-way coupled particle-laden wall-bounded flows
  17 Apr, 2023
Physics of Fluids, Volume 35, Issue 4, April 2023.
The exact regularized point particle method is used to characterize the turbulence modulation in two-way momentum-coupled direct numerical simulations of a turbulent pipe flow. The turbulence modification is parametrized by the particle Stokes number, the mass loading, and the particle-to-fluid density ratio. The data show that in the wide region of the parameter space addressed in the present paper, the overall friction drag is either increased or unaltered by the particles with respect to the uncoupled case. In the cases where the wall friction is enhanced, the fluid velocity fluctuations show a substantial modification in the viscous sub-layer and in the buffer layer. These effects are associated with a modified turbulent momentum flux toward the wall. The particles suppress the turbulent fluctuations in the buffer region and concurrently provide extra stress in the viscous sub-layer. The sum of the turbulent stress and the extra stress is larger than the Newtonian turbulent stress, thus explaining the drag increase. The non-trivial turbulence/particles interaction turns out in a clear alteration of the near-wall flow structures. The streamwise velocity streaks lose their spatial coherence when two-way coupling effects are predominant. This is associated with a shift of the streamwise vortices toward the center of the pipe and with the concurrent presence of small-scale and relatively more intense vortical structures near the wall.
► Partial and complete wetting of thin films with dynamic contact angle
  17 Apr, 2023
Physics of Fluids, Volume 35, Issue 4, April 2023.
The wetting of thin films depends critically on the sign of the spreading coefficient [math]. We discuss the cases S < 0, S = 0, and S > 0 for transient models with contact line dissipation and find that the use of a dynamic contact angle solves problems for S > 0 that models might otherwise have. For initial data with a non-zero slope and S > 0, we show that there exists a finite time [math] at which the contact angle of the thin film goes to zero. Then, a molecular precursor emerges from the thin film and moves outward at a constant velocity.

Theoretical and Computational Fluid Dynamics top

► A one-dimensional mathematical model for shear-induced droplet formation in co-flowing fluids
  22 Apr, 2024

Abstract

Shear-induced droplet formation is important in many industrial applications, primarily focusing on droplet sizes and pinch-off frequency. We propose a one-dimensional mathematical model that describes the effect of shear forces on the droplet interface evolution. The aim of this paper is to simulate paraffin wax droplets in a co-flowing fluid using the proposed model to estimate the droplet volume rate for different flow velocities. Thus, the study focuses only on the dripping regime. This one-dimensional model has a single parameter that arises from the force balance on the interface. This parameter is related to the shear layer thickness and hence influenced by the change in quantities like velocity, viscosity, and surface tension. The correlation describing the dependence of the parameter on these quantities using non-dimensional numbers is presented. The model is then cross-validated with the previous computational and experimental data. We use PETSc, an open-source solver toolkit, to implement our model using a mixed finite element discretization. We present the simulation results for liquid paraffin wax under fast-moving airflow with a range of velocities.

Graphical abstract

► Contribution of wedge and bulk viscous forces in droplets moving on inclined surfaces
  17 Apr, 2024

Abstract

Employing direct numerical simulations, we investigate water and water-glycerol (85 wt%) droplets ( \(\sim \) 25 µL) moving on smooth surfaces, with contact angles of around 90 \(^{\circ }\) , at varying inclinations. Our focus is on elucidating the relative contribution of local viscous forces in the wedge and bulk regions in droplets to the total viscous force. We observe that, for fast-moving droplets, both regions contribute comparably, while the contribution of the wedge region dominates in slow-moving cases. Comparisons with existing estimates reveal the inadequacy of previous predictions in capturing the contributions of wedge and bulk viscous forces in fast-moving droplets. Furthermore, we demonstrate that droplets with identical velocities can exhibit disparate viscous forces due to variations in internal fluid dynamics.

Graphical abstract

► Modal-based generalised quasilinear approximations for turbulent plane Couette flow
  15 Apr, 2024

Abstract

We study generalised quasilinear (GQL) approximations applied to turbulent plane Couette flow. The GQL framework is explored in conjunction with a Galerkin reduced-order model (ROM) recently developed by Cavalieri and Nogueira (Phys Rev Fluids 7:102601, 2022), which considers controllability modes of the linearised Navier–Stokes system as basis functions, representing coherent structures in the flow. The velocity field is decomposed into two groups: one composed by high-controllability modes and the other by low-controllability modes. The former group is solved with the full nonlinear equations, whereas the equations for the latter are linearised. We also consider a new GQL framework wherein the linearised equations for the low-controllability modes are driven by nonlinear interactions of modes in the first group, which are characterised by large-scale coherent structures. It is shown that GQL-ROMs successfully recover the statistics of the full model with relatively high controllability thresholds and sparser nonlinear operators. Driven GQL-ROMs were found to converge more rapidly than standard GQL approximations, providing accurate description of the statistics with a larger number of linearised modes. This indicates that the forcing of linearised flow structures by large-scale coherent structures is an important feature of turbulence dynamics that should be considered in GQL models. The results presented here reveal that further model reductions are attainable with GQL-ROMs, which can be valuable to extend these models to larger Reynolds numbers.

Graphical abstract

► Resolvent model for aeroacoustics of trailing edge noise
    8 Apr, 2024

Abstract

This study presents a physics-based, low-order model for the trailing edge (TE) noise generated by an airfoil at low angle of attack. The approach employs incompressible resolvent analysis of the mean flow to extract relevant spanwise-coherent structures in the transitional boundary layer and near wake. These structures are integrated into Curle’s solution to Lighthill’s acoustic analogy to obtain the scattered acoustic field. The model has the advantage of predicting surface pressure fluctuations from first principles, avoiding reliance on empirical models, but with a free amplitude set by simulation data. The model is evaluated for the transitional flow ( \(\text {Re} = 5e4\) ) around a NACA0012 airfoil at 3 deg angle of attack, which features TE noise with multiple tones. The mean flow is obtained from a compressible large eddy simulation, and spectral proper orthogonal decomposition (SPOD) is employed to extract the main hydrodynamic and acoustic features of the flow. Comparisons between resolvent and SPOD demonstrate that the physics-based model accurately captures the leading coherent structures at the main tones’ frequencies, resulting in a good agreement of the reconstructed acoustic power with that of the SPOD (within 4 dB). Discrepancies are observed at high frequencies, likely linked to nonlinearities that are not considered in the resolvent analysis. The model’s directivity aligns well with the data at low Helmholtz numbers, but it fails at high frequencies where the back-scattered pressure plays a significant role in directivity. This modeling approach opens the way for efficient optimization of airfoil shapes in combination with low-fidelity mean flow solvers to reduce TE noise.

Graphical abstract

► Analysis of transient and intermittent flows using a multidimensional empirical mode decomposition
    1 Apr, 2024

Abstract

Modal decomposition techniques are important tools for the analysis of unsteady flows and, in order to provide meaningful insights with respect to coherent structures and their characteristic frequencies, the modes must possess a robust spatial support. In this context, although widely used, methods based on singular value decomposition (SVD) may produce modes that are difficult to interpret when applied to problems dominated by intermittent and transient events. Fortunately, specific modal decomposition techniques have been recently developed to analyze such problems, but a proper comparison between them is still lacking from the literature. Therefore, this work compares two recent methods: the fast adaptive multivariate empirical mode decomposition (FA-MVEMD) and the multiresolution dynamic mode decomposition (mrDMD). These techniques are employed here for the study of flow databases involving transient and intermittent dynamics. Specifically, the investigated problems include an SD7003 airfoil subjected to deep dynamic stall conditions, and a steady NACA0012 airfoil operating at a transitional Reynolds number. In the former case, the methods are employed to investigate the onset and evolution of the dynamic stall vortex (DSV), while in the latter case, intermittent vortex pairing is analyzed. We show that the combination of a multidimensional EMD with the Hilbert transform provides modes with superior spatial support when compared to the mrDMD, also allowing the characterization of instantaneous frequencies of coherent structures. Moreover, the EMD also condenses a larger amount of information within a single intrinsic mode function (IMF).

Graphical abstract

► Wavy ground effects on the stability of cylinder wakes
  21 Feb, 2024

Abstract

The stability of the flow past a circular cylinder in the presence of a wavy ground is investigated numerically in this paper. The wavy ground consists of two complete waves with a wavelength of 4D and an amplitude of 0.5D, where D is the cylinder diameter. The vertical distance between the cylinder and the ground is varied, and four different cases are considered. The stability analysis shows that the critical Reynolds number increases for cases close to the ground when compared to the flow past a cylinder away from the ground. The maximum critical Reynolds number is obtained when the cylinder is located in front of the waves. The wavy ground adds layers of clockwise (negative) vorticity due to flow separation from the wave peak, to the oscillating Kármán vortex. This negative vorticity from the wave peak also cancels part of the positive (counterclockwise) vorticity shed from the bottom half of the cylinder. In addition, the negative vorticity from the wave peak strengthens the clockwise (negative) vorticity shed from the top half of the cylinder. These interactions combined with the ground effect skewed the flow away from the ground. The base flow is skewed upward for all the near-ground cases. However, this skew is larger when the cylinder is located over the wavy ground. The vortex shedding frequency is also altered due to the presence of the waves. The main eigenmode found for plain flow past a cylinder appears to become suppressed for cases closer to the ground. Limited particle image velocimetry experiments are reported which corroborate the finding from the stability analysis.

Graphical abstract

► Simulation of the unsteady vortical flow of freely falling plates
  14 Feb, 2024

Abstract

An inviscid vortex shedding model is numerically extended to simulate falling flat plates. The body and vortices separated from the edge of the body are described by vortex sheets. The vortex shedding model has computational limitations when the angle of incidence is small and the free vortex sheet approaches the body closely. These problems are overcome by using numerical procedures such as a method for a near-singular integral and the suppression of vortex shedding at the plate edge. The model is applied to a falling plate of flow regimes of various Froude numbers. For \(\text {Fr}=0.5\) , the plate develops large-scale side-to-side oscillations. In the case of \(\text {Fr}=1\) , the plate motion is a combination of side-to-side oscillations and tumbling and is identified as a chaotic type. For \(\text {Fr}=1.5\) , the plate develops to autorotating motion. Comparisons with previous experimental results show good agreement for the falling pattern. The dependence of change in the vortex structure on the Froude number and its relation with the plate motion is also examined.

Graphical abstract

► Investigation of Stokes flow in a grooved channel using the spectral method
    1 Feb, 2024

Abstract

Pressure-driven Newtonian fluid flow between grooved and flat surfaces is analysed with no-slip boundary conditions at walls. The effect of corrugation on the fluid flow is investigated using the mesh-free spectral method. The primary aim of the present work is to develop an asymptotic/semi-analytical theory for confined transverse flows to bridge the gap between the limits of thin and thick channels. The secondary aim is to calculate permeability with reference to the effect of wall corrugation (roughness) without the restriction of pattern amplitude. We performed mathematical modelling and evaluated the analytical solution for hydraulic permeability with respect to the flat channel. The Pad \(\acute{e}\) approximate is employed to improve the solution accuracy of an asymptotic model. The results elucidate that permeability always follows a decreasing trend with increasing pattern amplitude using the spectral approach at the long-wave and short-wave limits. The prediction of the spectral model is more accurate than the asymptotic-based model by Stroock et al. (Anal Chem 74(20):5306, 2002) and Pad \(\acute{e}\) approximate, regardless of the grooved depth and wavelength of the channel. The finite-element-based numerical simulation is also used to understand the usefulness of theoretical models. A very low computational time is required using the mesh-free spectral model as compared to the numerical study. The agreement between the present model and the fully resolved numerical results is gratifying. Regarding numerical values, we calculated the relative error for different theoretical models such as an asymptotic model, Pad \(\acute{e}\) approximate, and a mesh-free spectral model. The spectral model always predicts the maximum relative error as less than \(3 \%\) , regardless of the large pattern amplitude and wavelength. In addition, the results of the molecular dynamic (MD) simulations by Guo et al. (Phys Rev Fluids 1(7):074102, 2016) and the theoretical model by Wang (Phys Fluids 15(5):1121, 2003) are found to be quantitatively compatible with the predictions of effective slip length from the spectral model in the thick channel limit.

Graphical abstract

► Free surface wave interaction with a submerged body using a DtN boundary condition
    1 Feb, 2024

Abstract

Recently, Rim (Ocean Engng 239:711, 2021; J Ocean Engng Mar Energy 9:41-51, 2023 ) suggested an exact DtN artificial boundary condition to study the three-dimensional wave diffraction by stationary bodies. This paper is concerned with three-dimensional linear interaction between a submerged oscillating body with arbitrary shape and the regular water wave with finite depth. An exact Dirichlet-to-Neumann (DtN) boundary condition on a virtual cylindrical surface is derived, where the virtual surface is chosen so as to enclose the body and extract an interior subdomain with finite volume from the horizontally unbounded water domain. The DtN boundary condition is then applied to solve the interaction between the body and the linear wave in the interior subdomain by using boundary integral equation. Based on verification of the present model for a submerged vertical cylinder, the model is extended to the case of a submerged chamfer box with fillet radius in order to study 6-DoF oscillatory motion of the body under the free surface wave.

Graphical abstract

► An adjoint-based methodology for calculating manufacturing tolerances for natural laminar flow airfoils susceptible to smooth surface waviness
    1 Feb, 2024

Abstract

An adjoint-based method is presented for determining manufacturing tolerances for aerodynamic surfaces with natural laminar flow subjected to wavy excrescences. The growth of convective unstable disturbances is computed by solving Euler, boundary layer, and parabolized stability equations. The gradient of the kinetic energy of disturbances in the boundary layer (E) with respect to surface grid points is calculated by solving adjoints of the governing equations. The accuracy of approximations of \(\Delta E\) , using gradients obtained from adjoint, is investigated for several waviness heights. It is also shown how second-order derivatives increase the accuracy of approximations of \(\Delta E\) when surface deformations are large. Then, for specific flight conditions, using the steepest ascent and the sequential least squares programming methodologies, the waviness profile with minimum \(L2-\) norm that causes a specific increase in the maximum value of N- factor, \(\Delta N\) , is found. Finally, numerical tests are performed using the NLF(2)-0415 airfoil to specify tolerance levels for \(\Delta {N}\) up to 2.0 for different flight conditions. Most simulations are carried out for a Mach number and angle of attack equal to 0.5 and \(1.25^{\circ }\) , respectively, and with Reynolds numbers between \(9\times 10^6\) and \(15\times 10^6\) and for waviness profiles with different ranges of wavelengths. Finally, some additional studies are presented for different angles of attack and Mach numbers to show their effects on the computed tolerances.

Graphic abstract


return

Layout Settings:

Entries per feed:
Display dates:
Width of titles:
Width of content: