|
[Sponsors] |
[snappyHexMesh] problems generating clean mesh |
|
LinkBack | Thread Tools | Search this Thread | Display Modes |
May 16, 2014, 11:58 |
problems generating clean mesh
|
#1 |
New Member
Christian
Join Date: May 2014
Posts: 1
Rep Power: 0 |
Hi everyone!
I have some problems generating clean meshes for a pore. Ther are two different cases. (simple box and extendet bos as you can see below) In both cases I was unable to generat a clean mesh, which means there are some bulges and they shouldnt be there. So any ideas how to fix this? I tryed lots of different parameters for the mesh resolutions and played aroud with the SNH.dict but the bulges never dissapeared. An other problem is the structure of the mesh. In the simple case, the mesh direction seems to be the x axis and in the extendet case the mesh goes along ther pore direction (Which is the way it should be). for me it looks like snappyHexMesh is doing something strange. So her is my snappy.dict: Code:
/*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 2.0.0 | | \\ / A nd | Web: www.OpenFOAM.com | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class dictionary; object snappyHexMeshDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // PyFoam.TemplateFile is used to process this file. // needs the boundingbox of the fluid grid and one of the topmost cell centres of the structural grid. // Which of the steps to run castellatedMesh true; snap true; addLayers false; // Geometry. Definition of all surfaces. All surfaces are of class // searchableSurface. // Surfaces are used // - to specify refinement for any mesh cell intersecting it // - to specify refinement for any mesh cell inside/outside/near // - to 'snap' the mesh boundary to the surface geometry { surface.stl { type triSurfaceMesh; name surface; } // input from PyFoam with templateFile handling. BoundingBox of fluid geometry. // refinementBox //{ // type searchableBox; // min ($xmin$ $ymin$ $zmin$); // max ($xmax$ $ymax$ $zmax$); //} }; // Settings for the castellatedMesh generation. castellatedMeshControls { // Refinement parameters // ~~~~~~~~~~~~~~~~~~~~~ // If local number of cells is >= maxLocalCells on any processor // switches from from refinement followed by balancing // (current method) to (weighted) balancing before refinement. maxLocalCells 100000; // Overall cell limit (approximately). Refinement will stop immediately // upon reaching this number so a refinement level might not complete. // Note that this is the number of cells before removing the part which // is not 'visible' from the keepPoint. The final number of cells might // actually be a lot less. maxGlobalCells 5000000; // The surface refinement loop might spend lots of iterations refining just a // few cells. This setting will cause refinement to stop if <= minimumRefine // are selected for refinement. Note: it will at least do one iteration // (unless the number of cells to refine is 0) minRefinementCells 2; // Allow a certain level of imbalance during refining // (since balancing is quite expensive) // Expressed as fraction of perfect balance (= overall number of cells / // nProcs). 0=balance always. maxLoadUnbalance 0.10; // Number of buffer layers between different levels. // 1 means normal 2:1 refinement restriction, larger means slower // refinement. nCellsBetweenLevels 3; // Explicit feature edge refinement // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies a level for any cell intersected by its edges. // This is a featureEdgeMesh, read from constant/triSurface for now. features ( //{ // file "someLine.eMesh"; // level 2; //} ); // Surface based refinement // ~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies two levels for every surface. The first is the minimum level, // every cell intersecting a surface gets refined up to the minimum level. // The second level is the maximum level. Cells that 'see' multiple // intersections where the intersections make an // angle > resolveFeatureAngle get refined up to the maximum level. refinementSurfaces { surface { // Surface-wise min and max refinement level level (1 2); } } // Resolve sharp angles resolveFeatureAngle 30; // Region-wise refinement // ~~~~~~~~~~~~~~~~~~~~~~ // Specifies refinement level for cells in relation to a surface. One of // three modes // - distance. 'levels' specifies per distance to the surface the // wanted refinement level. The distances need to be specified in // descending order. // - inside. 'levels' is only one entry and only the level is used. All // cells inside the surface get refined up to the level. The surface // needs to be closed for this to be possible. // - outside. Same but cells outside. refinementRegions { refinementBox { mode inside; levels ((1E15 1)); } } // Mesh selection // ~~~~~~~~~~~~~~ // After refinement patches get added for all refinementSurfaces and // all cells intersecting the surfaces get put into these patches. The // section reachable from the locationInMesh is kept. // NOTE: This point should never be on a face, always inside a cell, even // after refinement. locationInMesh ($ccx$ $ccy$ $ccz$); // also to be processed by PyFoam. needs writeCellCentres on the structure Grid. // Whether any faceZones (as specified in the refinementSurfaces) // are only on the boundary of corresponding cellZones or also allow // free-standing zone faces. Not used if there are no faceZones. allowFreeStandingZoneFaces true; } // Settings for the snapping. snapControls { //- Number of patch smoothing iterations before finding correspondence // to surface nSmoothPatch 5; //- Relative distance for points to be attracted by surface feature point // or edge. True distance is this factor times local // maximum edge length. tolerance 4.0; //- Number of mesh displacement relaxation iterations. nSolveIter 30; //- Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 5; //- Highly experimental and wip: number of feature edge snapping // iterations. Leave out altogether to disable. // Do not use here since mesh resolution too low and baffles present //nFeatureSnapIter 10; } // Settings for the layer addition. addLayersControls { // Are the thickness parameters below relative to the undistorted // size of the refined cell outside layer (true) or absolute sizes (false). relativeSizes true; // Per final patch (so not geometry!) the layer information layers { "(A_outside|surface).*" { nSurfaceLayers 1; } } // Expansion factor for layer mesh expansionRatio 1.0; //- Wanted thickness of final added cell layer. If multiple layers // is the // thickness of the layer furthest away from the wall. // Relative to undistorted size of cell outside layer. // is the thickness of the layer furthest away from the wall. // See relativeSizes parameter. finalLayerThickness 0.3; //- Minimum thickness of cell layer. If for any reason layer // cannot be above minThickness do not add layer. // Relative to undistorted size of cell outside layer. minThickness 0.1; //- If points get not extruded do nGrow layers of connected faces that are // also not grown. This helps convergence of the layer addition process // close to features. // Note: changed(corrected) w.r.t 17x! (didn't do anything in 17x) nGrow 0; // Advanced settings //- When not to extrude surface. 0 is flat surface, 90 is when two faces // make straight angle. featureAngle 30; //- Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 3; // Number of smoothing iterations of surface normals nSmoothSurfaceNormals 2; // Number of smoothing iterations of interior mesh movement direction nSmoothNormals 3; // Smooth layer thickness over surface patches nSmoothThickness 10; // Stop layer growth on highly warped cells maxFaceThicknessRatio 0.5; // Reduce layer growth where ratio thickness to medial // distance is large maxThicknessToMedialRatio 0.3; // Angle used to pick up medial axis points // Note: changed(corrected) w.r.t 17x! 90 degrees corresponds to 130 in 17x. minMedianAxisAngle 90; // Create buffer region for new layer terminations nBufferCellsNoExtrude 0; // Overall max number of layer addition iterations. The mesher will exit // if it reaches this number of iterations; possibly with an illegal // mesh. nLayerIter 50; } // Generic mesh quality settings. At any undoable phase these determine // where to undo. meshQualityControls { //- Maximum non-orthogonality allowed. Set to 180 to disable. maxNonOrtho 65; //- Max skewness allowed. Set to <0 to disable. maxBoundarySkewness 20; maxInternalSkewness 4; //- Max concaveness allowed. Is angle (in degrees) below which concavity // is allowed. 0 is straight face, <0 would be convex face. // Set to 180 to disable. maxConcave 80; //- Minimum pyramid volume. Is absolute volume of cell pyramid. // Set to a sensible fraction of the smallest cell volume expected. // Set to very negative number (e.g. -1E30) to disable. minVol -1e30; //- Minimum quality of the tet formed by the face-centre // and variable base point minimum decomposition triangles and // the cell centre. This has to be a positive number for tracking // to work. Set to very negative number (e.g. -1E30) to // disable. // <0 = inside out tet, // 0 = flat tet // 1 = regular tet minTetQuality 0.001; //- Minimum face area. Set to <0 to disable. minArea -1; //- Minimum face twist. Set to <-1 to disable. dot product of face normal //- and face centre triangles normal minTwist 0.02; //- minimum normalised cell determinant //- 1 = hex, <= 0 = folded or flattened illegal cell minDeterminant 0.001; //- minFaceWeight (0 -> 0.5) minFaceWeight 0.02; //- minVolRatio (0 -> 1) minVolRatio 0.01; //must be >0 for Fluent compatibility minTriangleTwist -1; // Advanced //- Number of error distribution iterations nSmoothScale 4; //- amount to scale back displacement at error points errorReduction 0.75; } // Advanced // Flags for optional output // 0 : only write final meshes // 1 : write intermediate meshes // 2 : write volScalarField with cellLevel for postprocessing // 4 : write current intersections as .obj files debug 0; // Merge tolerance. Is fraction of overall bounding box of initial mesh. // Note: the write tolerance needs to be higher than this. mergeTolerance 1e-6; // ************************************************************************* // simple Box: http://www.directupload.net/file/d/3...yk4nrc_png.htm extendet Box: http://www.directupload.net/file/d/3...wlamhd_png.htm Thank you! Christian |
|
June 19, 2019, 08:52 |
|
#2 |
Member
Owais Shabbir
Join Date: May 2019
Posts: 48
Rep Power: 7 |
Hi Christian,
I am not very good at SHMDict file but I will try to help. I hope you have found your solution by now. But I think such problem could be caused due to the command you use. This is the Code:
snappyHexMesh -overwrite If this doesn't work, try increasing the surface refinement level to (2 4). Secondly, I hope you are using the correct locationInMesh vector. I am not familiar with the syntax you used. If you have already found your solution, could you write it here for others. Thanks Owais |
|
June 20, 2019, 06:39 |
|
#3 |
Senior Member
Sita Drost
Join Date: Mar 2009
Location: Arnhem, The Netherlands
Posts: 227
Rep Power: 18 |
Hi Christian,
If by bulges you mean these little bumps on the surface, where it should have been smooth: I experienced that too, some time ago. I can't exactly remember what I did to get rid of these bumps, but this post was very helpful (see the reply by Tobias Holzmann): Tiny bumps on surface - sMH Hope this will help you too, Sita |
|
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
decomposePar problem: Cell 0contains face labels out of range | vaina74 | OpenFOAM Pre-Processing | 37 | July 20, 2020 06:38 |
[ANSYS Meshing] First layter thickness on mesh causing problems | Rik102 | ANSYS Meshing & Geometry | 0 | November 4, 2016 10:51 |
[Commercial meshers] Problems with ANSYS mesh conversion | tdog | OpenFOAM Meshing & Mesh Conversion | 1 | March 31, 2016 18:36 |
Moving mesh | Niklas Wikstrom (Wikstrom) | OpenFOAM Running, Solving & CFD | 122 | June 15, 2014 07:20 |
[blockMesh] mesh causing problems with convergence | Tetragramm | OpenFOAM Meshing & Mesh Conversion | 0 | September 22, 2012 17:00 |