|
[Sponsors] |
May 5, 2014, 12:51 |
Edge refinement
|
#1 |
New Member
ashwin
Join Date: Jul 2012
Location: erlangen
Posts: 26
Rep Power: 14 |
Hello,
I have a problem with the edge refinement as seen in the attached picture. I have used the surface feature extract using different feature edge angles varying from 150°-50°. But I am still not able to capture the edges. Can anybody help me with this? Regards Ashwin |
|
May 6, 2014, 06:55 |
|
#2 |
Member
Julian Langowski
Join Date: May 2011
Location: Bremen, Germany
Posts: 91
Rep Power: 15 |
Dear Ashwin,
more information about your case would be helpful. Anyway, based on the image, I would say, the refinement level is too low. Try increasing it. Best regards Julian
__________________
πάντα ῥεῖ - Heraclitus |
|
May 6, 2014, 07:37 |
|
#3 | |
New Member
ashwin
Join Date: Jul 2012
Location: erlangen
Posts: 26
Rep Power: 14 |
Quote:
Here is my blockMeshdict & snappyHexMeshdict. Code:
/*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 2.2.0 | | \\ / A nd | Web: www.OpenFOAM.org | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class dictionary; object blockMeshDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // convertToMeters 1; vertices ( (-5000 -7000 -150) (5000 -7000 -150) (5000 7000 -150) (-5000 7000 -150) (-5000 -7000 800) (5000 -7000 800) (5000 7000 800) (-5000 7000 800) ); blocks ( hex (0 1 2 3 4 5 6 7) (100 200 50) simpleGrading (1 1 1) //50m ); edges ( ); boundary ( frontAndBack { type patch; faces ( (3 7 6 2) (1 5 4 0) ); } inlet { type patch; faces ( (0 4 7 3) ); } outlet { type patch; faces ( (2 6 5 1) ); } lowerWall { type wall; faces ( (0 3 2 1) ); } upperWall { type patch; faces ( (4 5 6 7) ); } ); // ************************************************************************* // Code:
/*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 2.2.0 | | \\ / A nd | Web: www.OpenFOAM.org | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class dictionary; object snappyHexMeshDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // Which of the steps to run castellatedMesh true; snap true; addLayers true; // Geometry. Definition of all surfaces. All surfaces are of class // searchableSurface. // Surfaces are used // - to specify refinement for any mesh cell intersecting it // - to specify refinement for any mesh cell inside/outside/near // - to 'snap' the mesh boundary to the surface geometry { Building.stl { type triSurfaceMesh; name Building; } West.stl { type triSurfaceMesh; name West; } South.stl { type triSurfaceMesh; name South; } North.stl { type triSurfaceMesh; name North; } East.stl { type triSurfaceMesh; name East; } Ground.stl { type triSurfaceMesh; name Ground; } Top.stl { type triSurfaceMesh; name Top; } // refinementBox // { // type searchableBox; // min (-1.0 -0.7 0.0); // max ( 8.0 0.7 2.5); // } }; // Settings for the castellatedMesh generation. castellatedMeshControls { // Refinement parameters // ~~~~~~~~~~~~~~~~~~~~~ // If local number of cells is >= maxLocalCells on any processor // switches from from refinement followed by balancing // (current method) to (weighted) balancing before refinement. maxLocalCells 1000000; // Overall cell limit (approximately). Refinement will stop immediately // upon reaching this number so a refinement level might not complete. // Note that this is the number of cells before removing the part which // is not 'visible' from the keepPoint. The final number of cells might // actually be a lot less. maxGlobalCells 20000000; // The surface refinement loop might spend lots of iterations refining just a // few cells. This setting will cause refinement to stop if <= minimumRefine // are selected for refinement. Note: it will at least do one iteration // (unless the number of cells to refine is 0) minRefinementCells 10; // Allow a certain level of imbalance during refining // (since balancing is quite expensive) // Expressed as fraction of perfect balance (= overall number of cells / // nProcs). 0=balance always. maxLoadUnbalance 0.10; // Number of buffer layers between different levels. // 1 means normal 2:1 refinement restriction, larger means slower // refinement. nCellsBetweenLevels 3; // Explicit feature edge refinement // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies a level for any cell intersected by its edges. // This is a featureEdgeMesh, read from constant/triSurface for now. features ( { file "Building.eMesh"; level 5; } { file "Ground.eMesh"; level 0; } { file "West.eMesh"; level 0; } { file "Top.eMesh"; level 0; } { file "East.eMesh"; level 0; } { file "North.eMesh"; level 0; } { file "South.eMesh"; level 0; } ); // Surface based refinement // ~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies two levels for every surface. The first is the minimum level, // every cell intersecting a surface gets refined up to the minimum level. // The second level is the maximum level. Cells that 'see' multiple // intersections where the intersections make an // angle > resolveFeatureAngle get refined up to the maximum level. refinementSurfaces { West { // Surface-wise min and max refinement level level (0 0); } East { // Surface-wise min and max refinement level level (0 0); } North { // Surface-wise min and max refinement level level (0 0); } South { // Surface-wise min and max refinement level level (0 0); } Ground { // Surface-wise min and max refinement level level (0 0); } Top { // Surface-wise min and max refinement level level (0 0); } Building { // Surface-wise min and max refinement level level (4 4); } } // Resolve sharp angles resolveFeatureAngle 30; // Region-wise refinement // ~~~~~~~~~~~~~~~~~~~~~~ // Specifies refinement level for cells in relation to a surface. One of // three modes // - distance. 'levels' specifies per distance to the surface the // wanted refinement level. The distances need to be specified in // descending order. // - inside. 'levels' is only one entry and only the level is used. All // cells inside the surface get refined up to the level. The surface // needs to be closed for this to be possible. // - outside. Same but cells outside. refinementRegions { /* Building { mode distance; levels ((100 4)(150 3)(200 2)); } */ } // Mesh selection // ~~~~~~~~~~~~~~ // After refinement patches get added for all refinementSurfaces and // all cells intersecting the surfaces get put into these patches. The // section reachable from the locationInMesh is kept. // NOTE: This point should never be on a face, always inside a cell, even // after refinement. locationInMesh (-791.3 -97.8 16.07); // Whether any faceZones (as specified in the refinementSurfaces) // are only on the boundary of corresponding cellZones or also allow // free-standing zone faces. Not used if there are no faceZones. allowFreeStandingZoneFaces true; } // Settings for the snapping. snapControls { //- Number of patch smoothing iterations before finding correspondence // to surface nSmoothPatch 3; //- Relative distance for points to be attracted by surface feature point // or edge. True distance is this factor times local // maximum edge length. tolerance 4.0; //- Number of mesh displacement relaxation iterations. nSolveIter 0; //- Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 5; // Feature snapping //- Number of feature edge snapping iterations. // Leave out altogether to disable. nFeatureSnapIter 10; //- Detect (geometric only) features by sampling the surface // (default=false). implicitFeatureSnap false; //- Use castellatedMeshControls::features (default = true) explicitFeatureSnap true; //- Detect points on multiple surfaces (only for explicitFeatureSnap) multiRegionFeatureSnap false; } // Settings for the layer addition. addLayersControls { // Are the thickness parameters below relative to the undistorted // size of the refined cell outside layer (true) or absolute sizes (false). relativeSizes true; // Per final patch (so not geometry!) the layer information layers { /* Ground_patch0 { nSurfaceLayers 3; } Building_patch0 { nSurfaceLayers 3; } */ } // Expansion factor for layer mesh expansionRatio 1.1; // Wanted thickness of final added cell layer. If multiple layers // is the // thickness of the layer furthest away from the wall. // Relative to undistorted size of cell outside layer. // is the thickness of the layer furthest away from the wall. // See relativeSizes parameter. finalLayerThickness 0.5; // Minimum thickness of cell layer. If for any reason layer // cannot be above minThickness do not add layer. // Relative to undistorted size of cell outside layer. minThickness 0.1; // If points get not extruded do nGrow layers of connected faces that are // also not grown. This helps convergence of the layer addition process // close to features. // Note: changed(corrected) w.r.t 17x! (didn't do anything in 17x) nGrow 0; // Advanced settings // When not to extrude surface. 0 is flat surface, 90 is when two faces // are perpendicular featureAngle 120; // At non-patched sides allow mesh to slip if extrusion direction makes // angle larger than slipFeatureAngle. slipFeatureAngle 30; // Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 3; // Number of smoothing iterations of surface normals nSmoothSurfaceNormals 1; // Number of smoothing iterations of interior mesh movement direction nSmoothNormals 3; // Smooth layer thickness over surface patches nSmoothThickness 10; // Stop layer growth on highly warped cells maxFaceThicknessRatio 0.5; // Reduce layer growth where ratio thickness to medial // distance is large maxThicknessToMedialRatio 0.3; // Angle used to pick up medial axis points // Note: changed(corrected) w.r.t 17x! 90 degrees corresponds to 130 in 17x. minMedianAxisAngle 90; // Create buffer region for new layer terminations nBufferCellsNoExtrude 0; // Overall max number of layer addition iterations. The mesher will exit // if it reaches this number of iterations; possibly with an illegal // mesh. nLayerIter 50; } // Generic mesh quality settings. At any undoable phase these determine // where to undo. meshQualityControls { //- Maximum non-orthogonality allowed. Set to 180 to disable. maxNonOrtho 65; //- Max skewness allowed. Set to <0 to disable. maxBoundarySkewness 20; maxInternalSkewness 4; //- Max concaveness allowed. Is angle (in degrees) below which concavity // is allowed. 0 is straight face, <0 would be convex face. // Set to 180 to disable. maxConcave 80; //- Minimum pyramid volume. Is absolute volume of cell pyramid. // Set to a sensible fraction of the smallest cell volume expected. // Set to very negative number (e.g. -1E30) to disable. minVol 1e-13; //- Minimum quality of the tet formed by the face-centre // and variable base point minimum decomposition triangles and // the cell centre. This has to be a positive number for tracking // to work. Set to very negative number (e.g. -1E30) to // disable. // <0 = inside out tet, // 0 = flat tet // 1 = regular tet minTetQuality 1e-30; //- Minimum face area. Set to <0 to disable. minArea -1; //- Minimum face twist. Set to <-1 to disable. dot product of face normal //- and face centre triangles normal minTwist 0.02; //- minimum normalised cell determinant //- 1 = hex, <= 0 = folded or flattened illegal cell minDeterminant 0.001; //- minFaceWeight (0 -> 0.5) minFaceWeight 0.02; //- minVolRatio (0 -> 1) minVolRatio 0.01; //must be >0 for Fluent compatibility minTriangleTwist -1; // Advanced //- Number of error distribution iterations nSmoothScale 4; //- amount to scale back displacement at error points errorReduction 0.75; } // Advanced // Flags for optional output // 0 : only write final meshes // 1 : write intermediate meshes // 2 : write volScalarField with cellLevel for postprocessing // 4 : write current intersections as .obj files debug 0; // Merge tolerance. Is fraction of overall bounding box of initial mesh. // Note: the write tolerance needs to be higher than this. mergeTolerance 1e-6; // ************************************************************************* // and here is my surface feature Extract dict Code:
/*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 2.2.0 | | \\ / A nd | Web: www.OpenFOAM.org | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class dictionary; object surfaceFeatureExtractDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // Building.stl { // How to obtain raw features (extractFromFile || extractFromSurface) extractionMethod extractFromSurface; extractFromSurfaceCoeffs { // Mark edges whose adjacent surface normals are at an angle less // than includedAngle as features // - 0 : selects no edges // - 180: selects all edges includedAngle 80; } } Ground.stl { // How to obtain raw features (extractFromFile || extractFromSurface) extractionMethod extractFromSurface; extractFromSurfaceCoeffs { // Mark edges whose adjacent surface normals are at an angle less // than includedAngle as features // - 0 : selects no edges // - 180: selects all edges includedAngle 150; } } West.stl { // How to obtain raw features (extractFromFile || extractFromSurface) extractionMethod extractFromSurface; extractFromSurfaceCoeffs { // Mark edges whose adjacent surface normals are at an angle less // than includedAngle as features // - 0 : selects no edges // - 180: selects all edges includedAngle 150; } } East.stl { // How to obtain raw features (extractFromFile || extractFromSurface) extractionMethod extractFromSurface; extractFromSurfaceCoeffs { // Mark edges whose adjacent surface normals are at an angle less // than includedAngle as features // - 0 : selects no edges // - 180: selects all edges includedAngle 150; } } North.stl { // How to obtain raw features (extractFromFile || extractFromSurface) extractionMethod extractFromSurface; extractFromSurfaceCoeffs { // Mark edges whose adjacent surface normals are at an angle less // than includedAngle as features // - 0 : selects no edges // - 180: selects all edges includedAngle 150; } } South.stl { // How to obtain raw features (extractFromFile || extractFromSurface) extractionMethod extractFromSurface; extractFromSurfaceCoeffs { // Mark edges whose adjacent surface normals are at an angle less // than includedAngle as features // - 0 : selects no edges // - 180: selects all edges includedAngle 150; } } Top.stl { // How to obtain raw features (extractFromFile || extractFromSurface) extractionMethod extractFromSurface; extractFromSurfaceCoeffs { // Mark edges whose adjacent surface normals are at an angle less // than includedAngle as features // - 0 : selects no edges // - 180: selects all edges includedAngle 150; } } subsetFeatures { // Keep nonManifold edges (edges with >2 connected faces) nonManifoldEdges no; // Keep open edges (edges with 1 connected face) openEdges yes; } // Write options // Write features to obj format for postprocessing writeObj yes; } // ************************************************************************* // Best Ashwin |
||
May 8, 2014, 10:42 |
Fine mesh
|
#4 |
New Member
ashwin
Join Date: Jul 2012
Location: erlangen
Posts: 26
Rep Power: 14 |
I tried to refine the mesh but with no use. i still cannot capture the edges. Can somebody tell me where am I going wrong?
Best Ashwin |
|
May 13, 2014, 06:45 |
|
#5 |
New Member
ashwin
Join Date: Jul 2012
Location: erlangen
Posts: 26
Rep Power: 14 |
Hello,
I could solve the problem. It was due to bad STL files. I corrected them using NETFABB and it works fine now. Regards Ashwin |
|
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
[snappyHexMesh] SnappyHexMesh running killed! | Mark JIN | OpenFOAM Meshing & Mesh Conversion | 7 | June 14, 2022 02:37 |
how to set periodic boundary conditions | Ganesh | FLUENT | 15 | November 18, 2020 07:09 |
killed "snappyHexMesh" | parkh32 | OpenFOAM Pre-Processing | 2 | April 8, 2012 18:12 |
[snappyHexMesh] snappyHexMesh aborting | Tobi | OpenFOAM Meshing & Mesh Conversion | 0 | November 10, 2010 04:23 |
fluent add additional zones for the mesh file | SSL | FLUENT | 2 | January 26, 2008 12:55 |