CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > General Forums > Main CFD Forum

rhie chow interpolation

Register Blogs Community New Posts Updated Threads Search

Like Tree1Likes
  • 1 Post By FMDenaro

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   March 19, 2012, 11:09
Unhappy rhie chow interpolation
  #1
Member
 
G. S.
Join Date: Nov 2010
Posts: 54
Rep Power: 15
gerardosrez is on a distinguished road
Hi cfd users...

according to the rhie chow interpolation several quantities must be interpolated to the cell face.

My concern is whats the right way to interpolate the volume to the cell face if i´m working with control volume finite element method on triangular grids (dual control volume).


Thanks in advance...
gerardosrez is offline   Reply With Quote

Old   March 19, 2012, 11:53
Default
  #2
Senior Member
 
Filippo Maria Denaro
Join Date: Jul 2010
Posts: 6,882
Rep Power: 73
FMDenaro has a spectacular aura aboutFMDenaro has a spectacular aura aboutFMDenaro has a spectacular aura about
Quote:
Originally Posted by gerardosrez View Post
Hi cfd users...

according to the rhie chow interpolation several quantities must be interpolated to the cell face.

My concern is whats the right way to interpolate the volume to the cell face if i´m working with control volume finite element method on triangular grids (dual control volume).


Thanks in advance...
Try starting from linear interpolation on Lagrangian simplex, then you can also improve accuracy with second degree polynomials
FMDenaro is offline   Reply With Quote

Old   March 19, 2012, 19:52
Default
  #3
Senior Member
 
Arjun
Join Date: Mar 2009
Location: Nurenberg, Germany
Posts: 1,286
Rep Power: 34
arjun will become famous soon enougharjun will become famous soon enough
There are many ways to interpolate volume and AP to face center. Starccm+ probably uses harmonic mean(for vol and AP) and some places (other variables) volume weighted interpolation.

Fluent does not say what they do.

Some people use linear interpolation and some people (most common though) use simple averaging (phi1 + phi2) / 2


I, after some testing (very subjective) have come to conclude that inverse distance based weighting works best so I now am trying to use everywhere in my code.

Last edited by arjun; March 19, 2012 at 21:48.
arjun is offline   Reply With Quote

Old   March 20, 2012, 00:08
Default
  #4
Member
 
G. S.
Join Date: Nov 2010
Posts: 54
Rep Power: 15
gerardosrez is on a distinguished road
thanks guys, I appreciate your comments.

I'll try some method for the interpolations, then I'll tell you about my results.

if you want to we can share information for this subject

Best regards...
gerardosrez is offline   Reply With Quote

Old   May 2, 2012, 03:25
Default
  #5
New Member
 
zhiwei liu
Join Date: Mar 2009
Posts: 22
Rep Power: 17
lzw2003 is on a distinguished road
Hi, i also want to use Rhie-chow interpolation in CVFEM. I read theory of CFX( based on CVFEM). it use finite elem shape function to perform the face interpolation.
lzw2003 is offline   Reply With Quote

Old   March 12, 2014, 15:42
Default a question
  #6
New Member
 
Join Date: Mar 2014
Posts: 9
Rep Power: 12
phdcandidate is on a distinguished road
I have written a computer code to solving incompressible viscous governing equations using CVFEM and collocated grid (based on Rhie and Chow's interpolation). At first I wrote this code in context of SIMPLE algorithm and run it to analysis the fluid in a square lid-driven cavity. I could simulate this problem even for high Reynolds number and my code worked properly to solve this problem. Then I prepared a code with the following algorithm:

1. Guess an initial velocity pressure field.
2. Solve x-momentum without pressure gradient term and obtain pseudo u-velocity (uhat).
3.
Solve y-momentum without pressure gradient term and obtain pseudo v-velocity (vhat).
4. Solve continuity equation in which velocities at integration points are replaced by following formula (based on Rhie and Chow's interpolation) and obtain pressure in all nodal points

uip = uhip-dip*(dp/dx)ip

vip = vhip-dip*(dp/dy)ip

5. Correction of uhat and vhat by obtained pressure from previous step
.
6. Checking convergence criterion. If this criterion is satisfied the algorithm will be stopped otherwise go to step 2 and the process will continue until this criterion is satisfied.

But the above algorithm is not working properly and my obtained results are false and different from those obtained by SIMPLE algorithm.

Do you know What is wrong with my algorithm?

Thanks for your help


phdcandidate is offline   Reply With Quote

Old   March 12, 2014, 16:00
Default
  #7
Senior Member
 
Filippo Maria Denaro
Join Date: Jul 2010
Posts: 6,882
Rep Power: 73
FMDenaro has a spectacular aura aboutFMDenaro has a spectacular aura aboutFMDenaro has a spectacular aura about
Quote:
Originally Posted by phdcandidate View Post
I have written a computer code to solving incompressible viscous governing equations using CVFEM and collocated grid (based on Rhie and Chow's interpolation). At first I wrote this code in context of SIMPLE algorithm and run it to analysis the fluid in a square lid-driven cavity. I could simulate this problem even for high Reynolds number and my code worked properly to solve this problem. Then I prepared a code with the following algorithm:

1. Guess an initial velocity pressure field.
2. Solve x-momentum without pressure gradient term and obtain pseudo u-velocity (uhat).
3.
Solve y-momentum without pressure gradient term and obtain pseudo v-velocity (vhat).
4. Solve continuity equation in which velocities at integration points are replaced by following formula (based on Rhie and Chow's interpolation) and obtain pressure in all nodal points

uip = uhip-dip*(dp/dx)ip

vip = vhip-dip*(dp/dy)ip

5. Correction of uhat and vhat by obtained pressure from previous step
.
6. Checking convergence criterion. If this criterion is satisfied the algorithm will be stopped otherwise go to step 2 and the process will continue until this criterion is satisfied.

But the above algorithm is not working properly and my obtained results are false and different from those obtained by SIMPLE algorithm.

Do you know What is wrong with my algorithm?

Thanks for your help




you are implementing an Approximate Projection Method, what differences do you see from the SIMPLE-based solution?

what about the divergence of the velocity field at the end of each time step?
phdcandidate likes this.
FMDenaro is offline   Reply With Quote

Old   March 12, 2014, 17:19
Default rhie chow interpolation
  #8
New Member
 
Join Date: Mar 2014
Posts: 9
Rep Power: 12
phdcandidate is on a distinguished road
I solve governing equations for this problem in steady-state mode and I have no time-step in my algorithm because my problem is steady-state. In proposed algorithm my code is converged but my solution is not right. In SIMPLE algorithm I do the following steps.

1- 1. Set an initial guess for velocity and pressure fields (ustar = vstar = pstar = 0).
2- 2. Solve x-momentum with pressure gradient term and obtain a new ustar and then by subtracting the pressure gradient I obtain pseudo velocity (uhat) .
3- 3. Solve y-momentum with pressure gradient term and obtain a new ustar and then by subtracting the pressure gradient I obtain pseudo velocity (vhat ).
4- 4. I solve continuity equation by approximating velocities at integration points in this way
uip=uhatip-dip*(dpstar/dx)ip
vip=vhatip-dip*(dpstar/dy)ip

(In this step I use the latest value of pstar and obtain pressure-correction instead of pressure.)

5- 5. Modify velocities and pressures by p-correction obtained in step 4.
6- 6. checking convergence if it is satisfied the process will be stopped otherwise go to step 2 with new pressure and velocity and the algorithm continue until convergence is achieved.


The results of this algorithm is right but the previous algorithm I mentioned before not. What is wrong?
phdcandidate is offline   Reply With Quote

Old   March 12, 2014, 17:23
Default
  #9
Senior Member
 
Filippo Maria Denaro
Join Date: Jul 2010
Posts: 6,882
Rep Power: 73
FMDenaro has a spectacular aura aboutFMDenaro has a spectacular aura aboutFMDenaro has a spectacular aura about
Quote:
Originally Posted by phdcandidate View Post
I solve governing equations for this problem in steady-state mode and I have no time-step in my algorithm because my problem is steady-state. In proposed algorithm my code is converged but my solution is not right. In SIMPLE algorithm I do the following steps.

1- 1. Set an initial guess for velocity and pressure fields (ustar = vstar = pstar = 0).
2- 2. Solve x-momentum with pressure gradient term and obtain a new ustar and then by subtracting the pressure gradient I obtain pseudo velocity (uhat) .
3- 3. Solve y-momentum with pressure gradient term and obtain a new ustar and then by subtracting the pressure gradient I obtain pseudo velocity (vhat ).
4- 4. I solve continuity equation by approximating velocities at integration points in this way
uip=uhatip-dip*(dpstar/dx)ip
vip=vhatip-dip*(dpstar/dy)ip

(In this step I use the latest value of pstar and obtain pressure-correction instead of pressure.)

5- 5. Modify velocities and pressures by p-correction obtained in step 4.
6- 6. checking convergence if it is satisfied the process will be stopped otherwise go to step 2 with new pressure and velocity and the algorithm continue until convergence is achieved.


The results of this algorithm is right but the previous algorithm I mentioned before not. What is wrong?

but you did not aswer to my question..what about the divergence of the velocity (at converged solution)? what differences you see?
FMDenaro is offline   Reply With Quote

Old   March 12, 2014, 17:35
Default a question
  #10
New Member
 
Join Date: Mar 2014
Posts: 9
Rep Power: 12
phdcandidate is on a distinguished road
Quote:
Originally Posted by FMDenaro View Post
but you did not aswer to my question..what about the divergence of the velocity (at converged solution)? what differences you see?
I do not any thing about projection method but I have heared about it. My convergence criterion is defined as follows:

MAXIMUM [u-momentum error,v-momentum error and continuty error ]< 1E-5

where:

u-momentum error = Summation of (un+1-un)/Summation of (un+1)
v-momentum error = Summation of (vn+1-vn)/Summation of (vn+1)
continuity error = Summation of (pn+1-pn)/Summation of (pn+1)

which n denotes for the number of iteration. DO you understand my meaning? Could I answer your question? My solution converged to a false answer.
phdcandidate is offline   Reply With Quote

Reply

Tags
collocated grid, cvfem, interpolation, rhie chow


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Rhie and Chow James Houghton Main CFD Forum 0 October 9, 2005 08:02
Rhie & Chow method/flame propagation? yang Main CFD Forum 0 May 19, 2005 09:00
Rhie - Chow Interpolation ? Javier Goicochea Main CFD Forum 0 November 27, 2003 19:01
Rhie - Chow speed up factors Goicox Main CFD Forum 0 November 22, 2003 01:00
Rhie & Chow interpolation Barry Main CFD Forum 3 January 20, 2003 10:11


All times are GMT -4. The time now is 09:43.