|
[Sponsors] |
June 22, 2016, 21:00 |
Eulerian-Eulerian Source Term
|
#1 |
Member
Camilo Costa
Join Date: Jun 2009
Posts: 34
Rep Power: 17 |
Hi!!!
I am trying to simulate a 2D, transient and Eulerian-Eulerian problem. I want to create a source term in x-mon and y-mon directions for both gas and liquid phases. The equation of source term is showed in the figure. My code for create the source term in gas for x-direction is: Code:
DEFINE_SOURCE(intforcexg, c, tm, dS, eqn) { real dotprot_CUG_CVOF_gas; real dotprot_CUG_CVOF_liq; real C_T = 1; real source; real A_i; real diam = 1e-5; Thread *t = THREAD_SUPER_THREAD(tm); Thread *tg = THREAD_SUB_THREAD(t, gas_zone); Thread *tl = THREAD_SUB_THREAD(t, liq_zone); if ((NULL != THREAD_STORAGE(tg, SV_VOF_G)) && (NULL != THREAD_STORAGE(tg, SV_U_G)) && (NULL != THREAD_STORAGE(tl, SV_VOF_G)) && (NULL != THREAD_STORAGE(tl, SV_U_G))) { dotprot_CUG_CVOF_gas = NV_DOT(C_U_G(c, tg), C_VOF_G(c, tg)); dotprot_CUG_CVOF_liq = NV_DOT(C_U_G(c, tl), C_VOF_G(c, tl)); A_i = 6. * C_VOF(c, tg) * C_VOF(c, tl) / diam; source = (-C_T * C_VOF(c, tg) * C_MU_EFF(c, tg) * dotprot_CUG_CVOF_gas - C_T * C_VOF(c, tl) * C_MU_EFF(c, tl) * dotprot_CUG_CVOF_liq) * A_i; //C_UDMI(c, t, 0) = source; return source; } else { return 0; } } When I try to run with x-source force appears this msg: Error: received a fatal signal (Segmentation fault). Error Object: #f I am lost, anyone could help me? Best Regards!!! |
|
June 23, 2016, 10:05 |
|
#2 |
Member
Rajukiran Antham
Join Date: Dec 2012
Location: Sweden
Posts: 41
Rep Power: 14 |
You are missing dS[eqn] in your UDF.
|
|
June 23, 2016, 17:19 |
|
#3 |
Member
Camilo Costa
Join Date: Jun 2009
Posts: 34
Rep Power: 17 |
Thank you RAJ KIRAN.
But is really necessary declare Code:
dS[eqn] = 0; Recentelly I discover that the fluent not disponibilize the C_VOF_G, and is necessary compute him. I find two ways for resolve this problem. First: Code:
DEFINE_ADJUST(adjust_gradient_g, gas_dom) { Thread *t; cell_t c; face_t f; gas_dom = Get_Domain(gas_id); /* Fill UDS with the variable. */ thread_loop_c(t, gas_dom) { begin_c_loop(c, t) { C_UDSI(c, t, 0) = C_VOF(c, t); } end_c_loop(c, t) } thread_loop_f(t, gas_dom) { if (THREAD_STORAGE(t, SV_UDS_I(0)) != NULL) begin_f_loop(f, t) { F_UDSI(f, t, 0) = F_VOF(f, t); } end_f_loop(f, t) } } DEFINE_ADJUST(adjust_gradient_l, liq_dom) { Thread *t; cell_t c; face_t f; liq_dom = Get_Domain(liq_id); /* Fill UDS with the variable. */ thread_loop_c(t, liq_dom) { begin_c_loop(c, t) { C_UDSI(c, t, 1) = C_VOF(c, t); } end_c_loop(c, t) } thread_loop_f(t, liq_dom) { if (THREAD_STORAGE(t, SV_UDS_I(1)) != NULL) begin_f_loop(f, t) { F_UDSI(f, t, 1) = F_VOF(f, t); } end_f_loop(f, t) } } Code:
DEFINE_ADJUST(store_gradient_g, domain) { Thread *t; Thread **pt; cell_t c; int phase_domain_index = 0.; Domain *pDomain = DOMAIN_SUB_DOMAIN(domain, phase_domain_index); { Alloc_Storage_Vars(pDomain, SV_VOF_RG, SV_VOF_G, SV_NULL); Scalar_Reconstruction(pDomain, SV_VOF, -1, SV_VOF_RG, NULL); Scalar_Derivatives(pDomain, SV_VOF, -1, SV_VOF_G, SV_VOF_RG, Vof_Deriv_Accumulate); } mp_thread_loop_c(t, domain, pt) if (FLUID_THREAD_P(t)) { Thread *ppt = pt[phase_domain_index]; begin_c_loop(c, t) { C_UDMI(c, t, 0) = C_VOF_G(c, ppt)[0]; C_UDMI(c, t, 1) = C_VOF_G(c, ppt)[1]; C_UDMI(c, t, 2) = C_VOF_G(c, ppt)[2]; } end_c_loop(c, t) } Free_Storage_Vars(pDomain, SV_VOF_RG, SV_VOF_G, SV_NULL); } DEFINE_ADJUST(store_gradient_l, domain) { Thread *t; Thread **st; cell_t c; int phase_domain_index = 1.; Domain *sDomain = DOMAIN_SUB_DOMAIN(domain, phase_domain_index); { Alloc_Storage_Vars(sDomain, SV_VOF_RG, SV_VOF_G, SV_NULL); Scalar_Reconstruction(sDomain, SV_VOF, -1, SV_VOF_RG, NULL); Scalar_Derivatives(sDomain, SV_VOF, -1, SV_VOF_G, SV_VOF_RG, Vof_Deriv_Accumulate); } mp_thread_loop_c(t, domain, st) if (FLUID_THREAD_P(t)) { Thread *ppt = st[phase_domain_index]; begin_c_loop(c, t) { C_UDMI(c, t, 1) = C_VOF_G(c, ppt)[0]; C_UDMI(c, t, 4) = C_VOF_G(c, ppt)[1]; C_UDMI(c, t, 5) = C_VOF_G(c, ppt)[2]; } end_c_loop(c, t) } Free_Storage_Vars(sDomain, SV_VOF_RG, SV_VOF_G, SV_NULL); } Don't forget is possible to dissable the solution of uds in your flow. Just disable in Controls -> Equations. |
|
June 24, 2016, 06:36 |
|
#4 |
Member
Rajukiran Antham
Join Date: Dec 2012
Location: Sweden
Posts: 41
Rep Power: 14 |
Yes, it is necessary to declare dS[eqn]. By setting it to 0 you pass only the the explicit part of the source code. If you want you can also pass the implicit part of the source, this enhances the stability of the solution and will help convergence rates. (According to the manual, you can read more about this in manual)
I used the second code to calculate the volume fraction gradient. It worked without any problems. I think you can also get the same thing done by using UDS, but I did not try this before. |
|
June 24, 2016, 08:57 |
|
#5 | |
Member
Camilo Costa
Join Date: Jun 2009
Posts: 34
Rep Power: 17 |
Quote:
|
||
June 24, 2016, 10:03 |
|
#6 |
Member
Camilo Costa
Join Date: Jun 2009
Posts: 34
Rep Power: 17 |
Was observed a differences between the tow methods for obtain the gradient of VOF. See the figures!!!
What is the most correctely? |
|
June 28, 2016, 12:19 |
C_mu_eff
|
#7 |
Member
Camilo Costa
Join Date: Jun 2009
Posts: 34
Rep Power: 17 |
Hi Guys!!
I resolved the almost problems, but I can't retrieve the value of C_MU_EFF!! What is wrong in the code? Code:
DEFINE_ADJUST(intforcexg, d) { cell_t c; Thread *t; Thread **pt = THREAD_SUB_THREADS(t); Thread *tg = pt[0]; Thread *tl = pt[1]; real source; real c_mu_eff_l; real C_T = 1; mp_thread_loop_c(t, d, tl) { if (FLUID_THREAD_P(t)) { begin_c_loop(c, t) { c_mu_eff_l = C_MU_EFF(c, t); C_UDMI(c, t, 5) = c_mu_eff_l; } end_c_loop(c, t) } } } |
|
June 28, 2016, 14:05 |
|
#8 | |
Member
Camilo Costa
Join Date: Jun 2009
Posts: 34
Rep Power: 17 |
Quote:
Code:
DEFINE_ADJUST(intforcexg, domain) { real mu_eff_g; real mu_eff_l; Thread *t; Thread **pt; cell_t c; mp_thread_loop_c(t, domain, pt) if (FLUID_THREAD_P(t)) { Thread *tp = pt[P_PHASE]; begin_c_loop(c, t) { mu_eff_g = C_MU_EFF(c, tp); C_UDMI(c, t, 5) = mu_eff_g; } end_c_loop(c, t) } mp_thread_loop_c(t, domain, pt) if (FLUID_THREAD_P(t)) { Thread *tp = pt[S_PHASE]; begin_c_loop(c, t) { mu_eff_l = C_MU_EFF(c, tp); C_UDMI(c, t, 6) = mu_eff_l; } end_c_loop(c, t) } } |
||
Tags |
c_u_g, c_vof, define_source, eurelian |
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
Source Term due to evaporation in energy transport equation | styleworker | OpenFOAM Programming & Development | 3 | September 7, 2022 04:09 |
[OpenFOAM.org] Patches to compile OpenFOAM 2.2 on Mac OS X | gschaider | OpenFOAM Installation | 136 | October 10, 2017 18:25 |
[swak4Foam] Swak4FOAM 0.2.3 / OF2.2.x installation error | FerdiFuchs | OpenFOAM Community Contributions | 27 | April 16, 2014 16:14 |
centOS 5.6 : paraFoam not working | yossi | OpenFOAM Installation | 2 | October 9, 2013 02:41 |
[swak4Foam] Error bulding swak4Foam | sfigato | OpenFOAM Community Contributions | 18 | August 22, 2013 13:41 |