CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Software User Forums > SU2

SU2 result in divergency

Register Blogs Community New Posts Updated Threads Search

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   March 13, 2023, 09:03
Default SU2 result in divergency
  #1
Member
 
zhangqiang
Join Date: Nov 2022
Posts: 43
Rep Power: 4
zhang-qiang is on a distinguished road
I want to implement the CFD by SU2, but the result is divergency.


The result is:


-------------------------------------------------------------------------
| ___ _ _ ___ |
| / __| | | |_ ) Release 7.5.0 "Blackbird" |
| \__ \ |_| |/ / |
| |___/\___//___| Suite (Computational Fluid Dynamics Code) |
| |
-------------------------------------------------------------------------
| SU2 Project Website: https://su2code.github.io |
| |
| The SU2 Project is maintained by the SU2 Foundation |
| (http://su2foundation.org) |
-------------------------------------------------------------------------
| Copyright 2012-2022, SU2 Contributors |
| |
| SU2 is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| SU2 is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with SU2. If not, see <http://www.gnu.org/licenses/>. |
-------------------------------------------------------------------------

Parsing config file for zone 0

----------------- Physical Case Definition ( Zone 0 ) -------------------
Incompressible Laminar Navier-Stokes' equations.
No restart solution, use the values at infinity (freestream).
Non-Dimensional simulation using intialization values.
The reference area is 1 m^2.
The semi-span will be computed using the max y(3D) value.
The reference length is 1 m.
Surface(s) where the force coefficients are evaluated and
their reference origin for moment computation:
- wall0 (0.25, 0, 0).
- inlet1 (0.25, 0, 0).
- outlet2 (0.25, 0, 0).
- outlet3 (0.25, 0, 0) m.
Surface(s) plotted in the output file: wall0, inlet1, outlet2, outlet3.
Input mesh file name: VesselCFD.SU2

--------------- Space Numerical Integration ( Zone 0 ) ------------------
Flux difference splitting (FDS) upwind scheme for the flow inviscid terms.
Second order integration in space, with slope limiter.
No slope-limiting method.
Average of gradients with correction (viscous flow terms).
Gradient for upwind reconstruction: Green-Gauss.
Gradient for viscous and source terms: Green-Gauss.

--------------- Time Numerical Integration ( Zone 0 ) ------------------
Local time stepping (steady state simulation).
Euler implicit method for the flow equations.
FGMRES is used for solving the linear system.
Using a ILU(0) preconditioning.
Convergence criteria of the linear solver: 1e-15.
Max number of linear iterations: 5.
No CFL adaptation.
Courant-Friedrichs-Lewy number: 100

------------------ Convergence Criteria ( Zone 0 ) ---------------------
Maximum number of solver subiterations: 1000.
Begin convergence monitoring at iteration 10.
Residual minimum value: 1e-8.
Cauchy series min. value: 1e-10.
Number of Cauchy elements: 100.
Begin windowed time average at iteration 0.

-------------------- Output Information ( Zone 0 ) ----------------------
File writing frequency:
+------------------------------------+
| File| Frequency|
+------------------------------------+
| RESTART| 1000|
| PARAVIEW| 1000|
| SURFACE_PARAVIEW| 1000|
+------------------------------------+
Writing the convergence history file every 1 inner iterations.
Writing the screen convergence history every 1 inner iterations.
The tabular file format is CSV (.csv).
Convergence history file name: history.
Forces breakdown file name: forces_breakdown.dat.
Surface file name: surface_flow.
Volume file name: flow.
Restart file name: restart_flow.dat.

------------- Config File Boundary Information ( Zone 0 ) ---------------
+-----------------------------------------------------------------------+
| Marker Type| Marker Name|
+-----------------------------------------------------------------------+
| Inlet boundary| inlet1|
+-----------------------------------------------------------------------+
| Outlet boundary| outlet2|
| | outlet3|
+-----------------------------------------------------------------------+
| Heat flux wall| wall0|
+-----------------------------------------------------------------------+

-------------------- Output Preprocessing ( Zone 0 ) --------------------

WARNING: SURFACE_PRESSURE_DROP can only be computed for at least 2 surfaces (outlet, inlet, ...)

Screen output fields: INNER_ITER, RMS_PRESSURE, RMS_VELOCITY-X, LIFT, DRAG
History output group(s): ITER, RMS_RES
Convergence field(s): RMS_PRESSURE
Warning: No (valid) fields chosen for time convergence monitoring. Time convergence monitoring inactive.
Volume output fields: COORDINATES, SOLUTION, PRIMITIVE

------------------- Geometry Preprocessing ( Zone 0 ) -------------------
Three dimensional problem.
92289 grid points.
469148 volume elements.
4 surface markers.
64464 boundary elements in index 0 (Marker = wall0).
878 boundary elements in index 1 (Marker = inlet1).
410 boundary elements in index 2 (Marker = outlet2).
546 boundary elements in index 3 (Marker = outlet3).
469148 tetrahedra.
Setting point connectivity.
Renumbering points (Reverse Cuthill McKee Ordering).
Recomputing point connectivity.
Setting element connectivity.
Checking the numerical grid orientation.
All volume elements are correctly orientend.
There has been a re-orientation of 64451 TRIANGLE surface elements.
Identifying edges and vertices.
Setting the control volume structure.
Volume of the computational grid: 9348.14.
Searching for the closest normal neighbors to the surfaces.
Storing a mapping from global to local point index.
Compute the surface curvature.
Max K: 22.8123. Mean K: 1.41928. Standard deviation K: 1.80931.
Checking for periodicity.
Computing mesh quality statistics for the dual control volumes.
+--------------------------------------------------------------+
| Mesh Quality Metric| Minimum| Maximum|
+--------------------------------------------------------------+
| Orthogonality Angle (deg.)| 50.0147| 85.3435|
| CV Face Area Aspect Ratio| 1.2441| 124.612|
| CV Sub-Volume Ratio| 1| 30.3995|
+--------------------------------------------------------------+
Finding max control volume width.
Semi-span length = 25.1458 m.
Wetted area = 4349.17 m^2.
Area projection in the x-plane = 1201.95 m^2, y-plane = 1110.11 m^2, z-plane = 1041.31 m^2.
Max. coordinate in the x-direction = 36.0612 m, y-direction = 25.1458 m, z-direction = 43.7841 m.
Min. coordinate in the x-direction = -18.1895 m, y-direction = -25.726 m, z-direction = -14.8485 m.
Computing wall distances.

-------------------- Solver Preprocessing ( Zone 0 ) --------------------
Incompressible flow: rho_ref, vel_ref, and temp_ref
are based on the initial values, p_ref = rho_ref*vel_ref^2.
Force coefficients computed using initial values.
The reference area for force coeffs. is 1 m^2.
The reference length for force coeffs. is 1 m.
The pressure is decomposed into thermodynamic and dynamic components.
The initial value of the dynamic pressure is 0.
Mach number: 8.38426e-05, computed using the Bulk modulus.
For external flows, the initial state is imposed at the far-field.
Angle of attack (deg): 0, computed using the initial velocity.
Side slip angle (deg): 0, computed using the initial velocity.
Reynolds number per meter: 332.733, computed using initial values.
Reynolds number is a byproduct of inputs only (not used internally).
SI units only. The grid should be dimensional (meters).
No energy equation.

-- Models:
+------------------------------------------------------------------------------+
| Viscosity Model| Conductivity Model| Fluid Model|
+------------------------------------------------------------------------------+
| CONSTANT_VISCOSITY| CONSTANT_PRANDTL| CONSTANT_DENSITY|
+------------------------------------------------------------------------------+
-- Fluid properties:
+------------------------------------------------------------------------------+
| Name| Dim. value| Ref. value| Unit|Non-dim. value|
+------------------------------------------------------------------------------+
| Viscosity| 0.003| 0.9982| N.s/m^2| 0.00300541|
+------------------------------------------------------------------------------+
| Prandtl (Lam.)| -| -| -| 0.72|
| Prandtl (Turb.)| -| -| -| 0.9|
+------------------------------------------------------------------------------+
| Bulk Modulus| 142000| 1| Pa| 142000|
+------------------------------------------------------------------------------+
-- Initial and free-stream conditions:
+------------------------------------------------------------------------------+
| Name| Dim. value| Ref. value| Unit|Non-dim. value|
+------------------------------------------------------------------------------+
| Dynamic Pressure| 0| 0.0009982| Pa| 0|
| Total Pressure| 0.0004991| 0.0009982| Pa| 0.5|
| Density| 998.2| 998.2| kg/m^3| 1|
| Velocity-X| 0.001| 0.001| m/s| 1|
| Velocity-Y| 0| 0.001| m/s| 0|
| Velocity-Z| 0| 0.001| m/s| 0|
| Velocity Magnitude| 0.001| 0.001| m/s| 1|
+------------------------------------------------------------------------------+
| Viscosity| 0.003| 0.9982| N.s/m^2| 0.00300541|
| Conductivity| -| 3.46417e-09| W/m^2.K| -|
+------------------------------------------------------------------------------+
| Mach Number| -| -| -| 8.38426e-05|
| Reynolds Number| -| -| -| 332.733|
+------------------------------------------------------------------------------+
Initialize Jacobian structure (Navier-Stokes). MG level: 0.

------------------- Numerics Preprocessing ( Zone 0 ) -------------------

----------------- Integration Preprocessing ( Zone 0 ) ------------------

------------------- Iteration Preprocessing ( Zone 0 ) ------------------
Euler/Navier-Stokes/RANS fluid iteration.

------------------------------ Begin Solver -----------------------------

Simulation Run using the Single-zone Driver
+----------------------------------------------------------------+
| Inner_Iter| rms[P]| rms[U]| CL| CD|
+----------------------------------------------------------------+
| 0| -1.300234| 0.490268|39069.201917|27374.057093|
| 1| -0.600316| 0.471953|-78247.420901|105376.144675|
| 2| -0.771319| 0.354187|-135126.017848|121352.099240|
| 3| -0.789537| 0.312287|-225476.897881|171008.950630|
| 4| -0.802164| 0.412648|-359122.247956|252816.843818|
| 5| -0.836631| 0.561806|-505284.616195|339028.861442|
| 6| -0.881676| 0.689737|-642280.099412|402188.454421|
| 7| -0.931496| 0.779226|-756102.976898|427419.814945|
| 8| -0.979310| 0.836191|-845691.054467|415599.080108|
| 9| -1.018084| 0.876357|-923551.549288|377618.023326|
| 10| -1.049876| 0.913212|-993206.783575|309446.095335|
| 11| -1.078548| 0.944839|-1051282.895311|199993.006621|
| 12| -1.102096| 0.965153|-1093086.601352|43781.384695|
| 13| -1.118599| 0.974189|-1112129.247301|-157585.373468|
| 14| -1.129272| 0.978684|-1104979.435224|-393843.975090|
| 15| -1.137641| 0.989014|-1075670.679050|-647604.559337|
| 16| -1.147044| 1.012416|-1037137.980643|-897611.284406|
| 17| -1.159680| 1.048279|-1006503.624561|-1123788.301588|
| 18| -1.176333| 1.090308|-996903.052294|-1313136.241188|
| 19| -1.196591| 1.132339|-1012805.210489|-1462090.119689|
| 20| -1.219337| 1.171186|-1051408.710758|-1572906.884003|
| 21| -1.243096| 1.205712|-1106343.251696|-1650763.219246|
| 22| -1.266709| 1.235774|-1170714.927635|-1702661.113887|
| 23| -1.288763| 1.261985|-1238940.438676|-1734803.915582|
| 24| -1.307652| 1.285106|-1307145.668949|-1751618.543913|
| 25| -1.322641| 1.305767|-1372615.377973|-1756382.264579|
| 26| -1.333427| 1.324581|-1433359.052878|-1751548.869977|
| 27| -1.340071| 1.342087|-1487585.909128|-1738979.144465|
| 28| -1.343460| 1.358627|-1532980.281103|-1720139.656868|
| 29| -1.344928| 1.374235|-1566441.413341|-1696156.092698|
| 30| -1.345387| 1.388796|-1584726.044633|-1667522.438378|
| 31| -1.344734| 1.402295|-1585628.082428|-1633364.724530|
| 32| -1.342319| 1.415006|-1569228.809471|-1591054.110075|
| 33| -1.338617| 1.427314|-1538313.597374|-1537021.736521|
| 34| -1.335835| 1.439096|-1497034.191621|-1468138.576542|
| 35| -1.336339| 1.448962|-1446941.971841|-1380004.561490|
| 36| -1.343773| 1.455956|-1389195.496779|-1272626.910697|
| 37| -1.360942| 1.459937|-1324007.337323|-1150717.885615|
| 38| -1.382123| 1.460813|-1248959.671613|-1019036.025458|

The CL/CD is divergency.

The mesh is:





The `SU2` file has been uploaded in github: https://github.com/zhang-qiang-githu.../VesselCFD.SU2

The configure file is: https://github.com/zhang-qiang-githu.../VesselCFD.SU2

Any suggestion is appreciated~~~
zhang-qiang is offline   Reply With Quote

Old   March 13, 2023, 09:07
Default
  #2
Member
 
zhangqiang
Join Date: Nov 2022
Posts: 43
Rep Power: 4
zhang-qiang is on a distinguished road
The configure file is:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% SU2 configuration file %
% Case description: Ultra coarse GGNS grid with mixed sections for testing %
% Author: Thomas D. Economon %
% Date: 2019.07.26 %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations (EULER, NAVIER_STOKES,
% TNE2_EULER, TNE2_NAVIER_STOKES,
% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY,
% POISSON_EQUATION)
SOLVER= INC_NAVIER_STOKES
%
% Specify turbulence model (NONE, SA, SST)
KIND_TURB_MODEL= NONE
%
% Mathematical problem (DIRECT, ADJOINT)
MATH_PROBLEM= DIRECT
%
% Restart solution (NO, YES)
RESTART_SOL= NO

% ---------------- INCOMPRESSIBLE FLOW CONDITION DEFINITION -------------------%
%
% Density model within the incompressible flow solver.
% Options are CONSTANT (default), BOUSSINESQ, or VARIABLE. If VARIABLE,
% an appropriate fluid model must be selected.
INC_DENSITY_MODEL= CONSTANT
%
% Solve the energy equation in the incompressible flow solver
INC_ENERGY_EQUATION = NO
%
% Initial density for incompressible flows
% (1.2886 kg/m^3 by default (air), 998.2 Kg/m^3 (water))
INC_DENSITY_INIT= 998.2
%
% Initial velocity for incompressible flows (1.0,0,0 m/s by default)
INC_VELOCITY_INIT= ( 0.001, 0.0, 0.0 )
%
% Initial temperature for incompressible flows that include the
% energy equation (288.15 K by default). Value is ignored if
% INC_ENERGY_EQUATION is false.
INC_TEMPERATURE_INIT= 288.15
%
% Non-dimensionalization scheme for incompressible flows. Options are
% INITIAL_VALUES (default), REFERENCE_VALUES, or DIMENSIONAL.
% INC_*_REF values are ignored unless REFERENCE_VALUES is chosen.
INC_NONDIM= INITIAL_VALUES
%
% Reference density for incompressible flows (1.0 kg/m^3 by default)
INC_DENSITY_REF= 1.0
%
% Reference velocity for incompressible flows (1.0 m/s by default)
INC_VELOCITY_REF= 1.0
%
% Reference temperature for incompressible flows that include the
% energy equation (1.0 K by default)
INC_TEMPERATURE_REF = 1.0
%
% List of inlet types for incompressible flows. List length must
% match number of inlet markers. Options: VELOCITY_INLET, PRESSURE_INLET.
INC_INLET_TYPE= VELOCITY_INLET
%
% Damping coefficient for iterative updates at pressure inlets. (0.1 by default)
INC_INLET_DAMPING= 0.1
%
% List of outlet types for incompressible flows. List length must
% match number of outlet markers. Options: PRESSURE_OUTLET, MASS_FLOW_OUTLET
INC_OUTLET_TYPE= PRESSURE_OUTLET PRESSURE_OUTLET
%
% Damping coefficient for iterative updates at mass flow outlets. (0.1 by default)
INC_OUTLET_DAMPING= 0.1

% --------------------------- VISCOSITY MODEL ---------------------------------%
%
% Viscosity model (SUTHERLAND, CONSTANT_VISCOSITY, POLYNOMIAL_VISCOSITY).
VISCOSITY_MODEL= CONSTANT_VISCOSITY
%
% Molecular Viscosity that would be constant (1.716E-5 by default)
MU_CONSTANT= 3E-3

% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation (m or in)
REF_ORIGIN_MOMENT_X = 0.25
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 0.00
%
% Reference length for pitching, rolling, and yawing non-dimensional moment (m or in)
REF_LENGTH= 1.0
%
% Reference area for force coefficients (0 implies automatic calculation) (m^2 or in^2)
REF_AREA= 1.0

% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
% Navier-Stokes (no-slip), constant heat flux wall marker(s) (NONE = no marker)
% Format: ( marker name, constant heat flux (J/m^2), ... )
MARKER_HEATFLUX= (wall0, 0.0)
%
% Inlet boundary marker(s) with the following formats (NONE = no marker)
% Inc. Pressure: (inlet marker, temperature, total pressure, flow_direction_x,
% flow_direction_y, flow_direction_z, ... ) where flow_direction is
% a unit vector.
MARKER_INLET= (inlet1, 288.15, 0.1, 1.487046, -9.200968, 3.623656)
%
% Outlet boundary marker(s) (NONE = no marker)
% Compressible: ( outlet marker, back pressure (static thermodynamic), ... )
% Inc. Pressure: ( outlet marker, back pressure (static gauge in Pa), ... )
% Inc. Mass Flow: ( outlet marker, mass flow target (kg/s), ... )
MARKER_OUTLET= (outlet2, 0.0,outlet3, 0.0)
%
% Symmetry boundary marker(s) (NONE = no marker)
MARKER_SYM= ( NONE )
%
% Marker(s) of the surface in the surface flow solution file
MARKER_PLOTTING = ( wall0, inlet1, outlet2, outlet3 )
%
% Marker(s) of the surface where the non-dimensional coefficients are evaluated.
MARKER_MONITORING = ( wall0, inlet1, outlet2, outlet3 )

% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= GREEN_GAUSS
%
% Courant-Friedrichs-Lewy condition of the finest grid
CFL_NUMBER= 1e2
%
% Runge-Kutta alpha coefficients
RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 )

% ------------------------ LINEAR SOLVER DEFINITION ---------------------------%
%
% Linear solver or smoother for implicit formulations (BCGSTAB, FGMRES, SMOOTHER_JACOBI,
% SMOOTHER_ILU0, SMOOTHER_LUSGS,
% SMOOTHER_LINELET)
LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (ILU0, LU_SGS, LINELET, JACOBI)
LINEAR_SOLVER_PREC= ILU
%
% Minimum error of the linear solver for implicit formulations
LINEAR_SOLVER_ERROR= 1E-15
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 5

% -------------------------- MULTIGRID PARAMETERS -----------------------------%
%
% Multi-grid Levels (0 = no multi-grid)
MGLEVEL= 0
%
% Multi-grid Cycle (0 = V cycle, 1 = W Cycle)
%
% Multi-grid pre-smoothing level
MG_PRE_SMOOTH= ( 1, 2, 3, 3 )
%
% Multi-grid post-smoothing level
MG_POST_SMOOTH= ( 0, 0, 0, 0 )
%
% Jacobi implicit smoothing of the correction
MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 )
%
% Damping factor for the residual restriction
MG_DAMP_RESTRICTION= 0.75
%
% Damping factor for the correction prolongation
MG_DAMP_PROLONGATION= 0.75


% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
% TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= FDS
%
% Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations.
% Required for 2nd order upwind schemes (NO, YES)
MUSCL_FLOW= YES
%
% Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG,
% BARTH_JESPERSEN, VAN_ALBADA_EDGE)
SLOPE_LIMITER_FLOW= NONE
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT

% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Number of total iterations
ITER= 1000
%
% Min value of the residual (log10 of the residual)
CONV_RESIDUAL_MINVAL= -8
%
% Start convergence criteria at iteration number
CONV_STARTITER= 10
%
% Number of elements to apply the criteria
CONV_CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CONV_CAUCHY_EPS= 1E-10

% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
% Mesh input file
MESH_FILENAME= VesselCFD.SU2
%
% Mesh input file format (SU2, CGNS, NETCDF_ASCII)
MESH_FORMAT= SU2
%
% Mesh output file
MESH_OUT_FILENAME= mesh_out.su2
%
% Restart flow input file
SOLUTION_FILENAME= solution_flow.dat
%
% Restart adjoint input file
SOLUTION_ADJ_FILENAME= solution_adj.dat
%
TABULAR_FORMAT= CSV
%
% Output file convergence history (w/o extension)
CONV_FILENAME= history
%
% Output file restart flow
RESTART_FILENAME= restart_flow.dat
%
% Output file restart adjoint
RESTART_ADJ_FILENAME= restart_adj.dat
%
% Output file flow (w/o extension) variables
VOLUME_FILENAME= flow
%
% Output file adjoint (w/o extension) variables
VOLUME_ADJ_FILENAME= adjoint
%
% Output Objective function
VALUE_OBJFUNC_FILENAME= of_eval.dat
%
% Output objective function gradient (using continuous adjoint)
GRAD_OBJFUNC_FILENAME= of_grad.dat
%
% Output file surface flow coefficient (w/o extension)
SURFACE_FILENAME= surface_flow
%
% Output file surface adjoint coefficient (w/o extension)
SURFACE_ADJ_FILENAME= surface_adjoint
%
% Writing solution file frequency
OUTPUT_WRT_FREQ= 1000
%
%
SCREEN_OUTPUT= (INNER_ITER, RMS_PRESSURE, RMS_VELOCITY-X, LIFT, DRAG)
zhang-qiang is offline   Reply With Quote

Old   March 13, 2023, 17:37
Default
  #3
Senior Member
 
bigfoot
Join Date: Dec 2011
Location: Netherlands
Posts: 676
Rep Power: 21
bigfootedrockmidget is on a distinguished road
Disable the MUSCL scheme for good convergence:
Code:
MUSCL=NO
and let it run for 1000 iterations.
You should also use
Code:
INC_INLET_USENORMALS=YES
. SU2 will then use only the velocity magnitude from MARKER_INLET, it will automatically be imposed normal to the inlet face, your current normal does not look correct.



bigfootedrockmidget is offline   Reply With Quote

Old   March 13, 2023, 21:45
Default
  #4
Member
 
zhangqiang
Join Date: Nov 2022
Posts: 43
Rep Power: 4
zhang-qiang is on a distinguished road
MUSCL=NO
INC_INLET_USENORMALS=YES

Do you mean:

MUSCL_FLOW= NO
INC_INLET_USENORMAL=YES

Moreover, my SU2 result is still divergency. Could you please provide the correct configure file? Many thanks.

In addition, I feel confuzed about the inlet velocty. There are two velocity setting:
INC_VELOCITY_INIT= ( 0.001, 0.0, 0.0 )
MARKER_INLET= (inlet1, 288.15, 0.1, 1.487046, -9.200968, 3.623656)

In my understanding, the INC_VELOCITY_INIT indicates the initial velocity for the blood in vessel, and the MARKER_INLET indicates the velocity would flow into vessel. Am I right?
However, the SU2 explanation said: flow_direction is a unit vector. It means MARKER_INLET represents only direction nor magnitude. How to indicates the blood velocity flow into vessel is 5cm/s or 10 cm/s?
zhang-qiang is offline   Reply With Quote

Old   March 14, 2023, 16:35
Default
  #5
Senior Member
 
bigfoot
Join Date: Dec 2011
Location: Netherlands
Posts: 676
Rep Power: 21
bigfootedrockmidget is on a distinguished road
Code:
MUSCL_FLOW= NO
INC_INLET_USENORMAL=YES
These are the only things I changed. Are you using a recent version of SU2?

Code:
 MARKER_INLET= (inlet1, 288.15, 0.1, 1.487046, -9.200968, 3.623656)
The last 3 numbers are the x,y,z directions of the vector. This vector will be normalized internally by SU2, so it does not influence the magnitude of velocity, only direction. If you want the fluid to be injected normal to the inlet face, then you put INC_INLET_USENORMAL= YES and these 3 numbers in MARKER_INLET will be ignored.
Your current setting puts the inlet velocity at 0.1 m/s



Code:
 INC_VELOCITY_INIT= ( 0.001, 0.0, 0.0 )
This is indeed the initial velocity in the entire domain.
bigfootedrockmidget is offline   Reply With Quote

Old   March 14, 2023, 22:24
Default
  #6
Member
 
zhangqiang
Join Date: Nov 2022
Posts: 43
Rep Power: 4
zhang-qiang is on a distinguished road
Code:
MARKER_INLET= (inlet1, 288.15, 0.1, 1.487046, -9.200968, 3.623656)

Does the 0.1 means the velocity? But the configure explanation said it is total pressure:

% Inlet boundary marker(s) with the following formats (NONE = no marker)
% Inc. Pressure: (inlet marker, temperature, total pressure, flow_direction_x,
% flow_direction_y, flow_direction_z, ... ) where flow_direction is
% a unit vector.

So, whether the explanation should be revised?

In addition, I have try SU2-v7.5.1 and SU2-v7.3.0, both give a divergence result. Which version do you use?
zhang-qiang is offline   Reply With Quote

Old   March 15, 2023, 17:45
Default
  #7
Senior Member
 
bigfoot
Join Date: Dec 2011
Location: Netherlands
Posts: 676
Rep Power: 21
bigfootedrockmidget is on a distinguished road
Please use the description in config_template.cfg, the description in the other configuration files are not updated automatically.


Code:
% Inlet boundary marker(s) with the following formats (NONE = no marker)
% Total Conditions: (inlet marker, total temp, total pressure, flow_direction_x,
%           flow_direction_y, flow_direction_z, ... ) where flow_direction is
%           a unit vector.
% Mass Flow: (inlet marker, density, velocity magnitude, flow_direction_x,
%           flow_direction_y, flow_direction_z, ... ) where flow_direction is
%           a unit vector.
% Inc. Velocity: (inlet marker, temperature, velocity magnitude, flow_direction_x,
%           flow_direction_y, flow_direction_z, ... ) where flow_direction is
%           a unit vector.
% Inc. Pressure: (inlet marker, temperature, total pressure, flow_direction_x,
%           flow_direction_y, flow_direction_z, ... ) where flow_direction is
%           a unit vector.

The configuration should definitely work with 7.5.1.
bigfootedrockmidget is offline   Reply With Quote

Old   March 16, 2023, 09:55
Default
  #8
Member
 
zhangqiang
Join Date: Nov 2022
Posts: 43
Rep Power: 4
zhang-qiang is on a distinguished road
I am sorry, but the SU2 7.5.1 really give a divergence result. The printed information is:


-------------------------------------------------------------------------
| ___ _ _ ___ |
| / __| | | |_ ) Release 7.5.1 "Blackbird" |
| \__ \ |_| |/ / |
| |___/\___//___| Suite (Computational Fluid Dynamics Code) |
| |
-------------------------------------------------------------------------
| SU2 Project Website: https://su2code.github.io |
| |
| The SU2 Project is maintained by the SU2 Foundation |
| (http://su2foundation.org) |
-------------------------------------------------------------------------
| Copyright 2012-2023, SU2 Contributors |
| |
| SU2 is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| SU2 is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with SU2. If not, see <http://www.gnu.org/licenses/>. |
-------------------------------------------------------------------------

Parsing config file for zone 0

----------------- Physical Case Definition ( Zone 0 ) -------------------
Incompressible Laminar Navier-Stokes' equations.
No restart solution, use the values at infinity (freestream).
Non-Dimensional simulation using intialization values.
The reference area is 1 m^2.
The semi-span will be computed using the max y(3D) value.
The reference length is 1 m.
Surface(s) where the force coefficients are evaluated and
their reference origin for moment computation:
- wall0 (0.25, 0, 0).
- inlet1 (0.25, 0, 0).
- outlet2 (0.25, 0, 0).
- outlet3 (0.25, 0, 0) m.
Surface(s) plotted in the output file: wall0, inlet1, outlet2, outlet3.
Input mesh file name: VesselCFD.SU2

--------------- Space Numerical Integration ( Zone 0 ) ------------------
Flux difference splitting (FDS) upwind scheme for the flow inviscid terms.
First order integration in space.
Average of gradients with correction (viscous flow terms).
Gradient for upwind reconstruction: Green-Gauss.
Gradient for viscous and source terms: Green-Gauss.

--------------- Time Numerical Integration ( Zone 0 ) ------------------
Local time stepping (steady state simulation).
Euler implicit method for the flow equations.
FGMRES is used for solving the linear system.
Using a ILU(0) preconditioning.
Convergence criteria of the linear solver: 1e-15.
Max number of linear iterations: 5.
No CFL adaptation.
Courant-Friedrichs-Lewy number: 100

------------------ Convergence Criteria ( Zone 0 ) ---------------------
Maximum number of solver subiterations: 1000.
Begin convergence monitoring at iteration 10.
Residual minimum value: 1e-8.
Cauchy series min. value: 1e-10.
Number of Cauchy elements: 100.
Begin windowed time average at iteration 0.

-------------------- Output Information ( Zone 0 ) ----------------------
File writing frequency:
+------------------------------------+
| File| Frequency|
+------------------------------------+
| RESTART| 1000|
| PARAVIEW| 1000|
| SURFACE_PARAVIEW| 1000|
+------------------------------------+
Writing the convergence history file every 1 inner iterations.
Writing the screen convergence history every 1 inner iterations.
The tabular file format is CSV (.csv).
Convergence history file name: history.
Forces breakdown file name: forces_breakdown.dat.
Surface file name: surface_flow.
Volume file name: flow.
Restart file name: restart_flow.dat.

------------- Config File Boundary Information ( Zone 0 ) ---------------
+-----------------------------------------------------------------------+
| Marker Type| Marker Name|
+-----------------------------------------------------------------------+
| Inlet boundary| inlet1|
+-----------------------------------------------------------------------+
| Outlet boundary| outlet2|
| | outlet3|
+-----------------------------------------------------------------------+
| Heat flux wall| wall0|
+-----------------------------------------------------------------------+

-------------------- Output Preprocessing ( Zone 0 ) --------------------

WARNING: SURFACE_PRESSURE_DROP can only be computed for at least 2 surfaces (outlet, inlet, ...)

Screen output fields: INNER_ITER, RMS_PRESSURE, RMS_VELOCITY-X, LIFT, DRAG
History output group(s): ITER, RMS_RES
Convergence field(s): RMS_PRESSURE
Warning: No (valid) fields chosen for time convergence monitoring. Time convergence monitoring inactive.
Volume output fields: COORDINATES, SOLUTION, PRIMITIVE

------------------- Geometry Preprocessing ( Zone 0 ) -------------------
Three dimensional problem.
92289 grid points.
469148 volume elements.
4 surface markers.
64464 boundary elements in index 0 (Marker = wall0).
878 boundary elements in index 1 (Marker = inlet1).
410 boundary elements in index 2 (Marker = outlet2).
546 boundary elements in index 3 (Marker = outlet3).
469148 tetrahedra.
Setting point connectivity.
Renumbering points (Reverse Cuthill McKee Ordering).
Recomputing point connectivity.
Setting element connectivity.
Checking the numerical grid orientation.
All volume elements are correctly orientend.
There has been a re-orientation of 64451 TRIANGLE surface elements.
Identifying edges and vertices.
Setting the control volume structure.
Volume of the computational grid: 9348.14.
Searching for the closest normal neighbors to the surfaces.
Storing a mapping from global to local point index.
Compute the surface curvature.
Max K: 22.8123. Mean K: 1.41928. Standard deviation K: 1.80931.
Checking for periodicity.
Computing mesh quality statistics for the dual control volumes.
+--------------------------------------------------------------+
| Mesh Quality Metric| Minimum| Maximum|
+--------------------------------------------------------------+
| Orthogonality Angle (deg.)| 50.0147| 85.3435|
| CV Face Area Aspect Ratio| 1.2441| 124.612|
| CV Sub-Volume Ratio| 1| 30.3995|
+--------------------------------------------------------------+
Finding max control volume width.
Semi-span length = 25.1458 m.
Wetted area = 4349.17 m^2.
Area projection in the x-plane = 1201.95 m^2, y-plane = 1110.11 m^2, z-plane = 1041.31 m^2.
Max. coordinate in the x-direction = 36.0612 m, y-direction = 25.1458 m, z-direction = 43.7841 m.
Min. coordinate in the x-direction = -18.1895 m, y-direction = -25.726 m, z-direction = -14.8485 m.
Computing wall distances.

-------------------- Solver Preprocessing ( Zone 0 ) --------------------
Incompressible flow: rho_ref, vel_ref, and temp_ref
are based on the initial values, p_ref = rho_ref*vel_ref^2.
Force coefficients computed using initial values.
The reference area for force coeffs. is 1 m^2.
The reference length for force coeffs. is 1 m.
The pressure is decomposed into thermodynamic and dynamic components.
The initial value of the dynamic pressure is 0.
Mach number: 8.38426e-05, computed using the Bulk modulus.
For external flows, the initial state is imposed at the far-field.
Angle of attack (deg): 0, computed using the initial velocity.
Side slip angle (deg): 0, computed using the initial velocity.
Reynolds number per meter: 332.733, computed using initial values.
Reynolds number is a byproduct of inputs only (not used internally).
SI units only. The grid should be dimensional (meters).
No energy equation.

-- Models:
+------------------------------------------------------------------------------+
| Viscosity Model| Conductivity Model| Fluid Model|
+------------------------------------------------------------------------------+
| CONSTANT_VISCOSITY| CONSTANT_PRANDTL| CONSTANT_DENSITY|
+------------------------------------------------------------------------------+
-- Fluid properties:
+------------------------------------------------------------------------------+
| Name| Dim. value| Ref. value| Unit|Non-dim. value|
+------------------------------------------------------------------------------+
| Viscosity| 0.003| 0.9982| N.s/m^2| 0.00300541|
+------------------------------------------------------------------------------+
| Prandtl (Lam.)| -| -| -| 0.72|
| Prandtl (Turb.)| -| -| -| 0.9|
+------------------------------------------------------------------------------+
| Bulk Modulus| 142000| 1| Pa| 142000|
+------------------------------------------------------------------------------+
-- Initial and free-stream conditions:
+------------------------------------------------------------------------------+
| Name| Dim. value| Ref. value| Unit|Non-dim. value|
+------------------------------------------------------------------------------+
| Dynamic Pressure| 0| 0.0009982| Pa| 0|
| Total Pressure| 0.0004991| 0.0009982| Pa| 0.5|
| Density| 998.2| 998.2| kg/m^3| 1|
| Velocity-X| 0.001| 0.001| m/s| 1|
| Velocity-Y| 0| 0.001| m/s| 0|
| Velocity-Z| 0| 0.001| m/s| 0|
| Velocity Magnitude| 0.001| 0.001| m/s| 1|
+------------------------------------------------------------------------------+
| Viscosity| 0.003| 0.9982| N.s/m^2| 0.00300541|
| Conductivity| -| 3.46417e-09| W/m^2.K| -|
+------------------------------------------------------------------------------+
| Mach Number| -| -| -| 8.38426e-05|
| Reynolds Number| -| -| -| 332.733|
+------------------------------------------------------------------------------+
Initialize Jacobian structure (Navier-Stokes). MG level: 0.

------------------- Numerics Preprocessing ( Zone 0 ) -------------------

----------------- Integration Preprocessing ( Zone 0 ) ------------------

------------------- Iteration Preprocessing ( Zone 0 ) ------------------
Euler/Navier-Stokes/RANS fluid iteration.

------------------------------ Begin Solver -----------------------------

Simulation Run using the Single-zone Driver
+----------------------------------------------------------------+
| Inner_Iter| rms[P]| rms[U]| CL| CD|
+----------------------------------------------------------------+
| 0| -0.039398| 1.231724|760140.323508|335757.021195|
| 1| -0.131981| 1.767271|1178651.769594|-396611.920129|
| 2| -0.446379| 1.282343|1667860.040884|-312303.488860|
| 3| -0.653551| 1.202774|1849616.450451|-1021473.616273|
| 4| -0.851566| 1.048014|2139839.671830|-1242454.552419|
| 5| -0.878048| 1.040472|2366586.530849|-1131992.062931|
| 6| -0.872402| 0.948839|2553216.733541|-872328.370051|
| 7| -0.892108| 0.861974|2669228.360531|-627011.080465|
| 8| -0.933235| 0.798989|2747952.907754|-484552.481235|
| 9| -0.980118| 0.750095|2860608.119171|-413869.276011|
| 10| -1.020490| 0.717126|3048598.796961|-373568.818428|
| 11| -1.049455| 0.688419|3291242.193729|-342172.267804|
| 12| -1.067954| 0.667032|3540550.074056|-301030.785243|
| 13| -1.080268| 0.660675|3761237.220824|-235918.520764|
| 14| -1.090510| 0.660687|3946742.890656|-144091.785469|
| 15| -1.100877| 0.657810|4110023.976118|-33756.869419|
| 16| -1.111531| 0.652511|4267941.429005|82920.673855|
| 17| -1.121957| 0.648058|4431428.333863|196755.747816|
| 18| -1.131994| 0.645157|4602775.212595|304663.065665|
| 19| -1.141821| 0.642742|4778250.049224|408556.732697|

The printed information shows the version of used SU2 is 7.5.1 blackbird, and the CL/CD is divergency. I will post the modified configure in the next answer.
zhang-qiang is offline   Reply With Quote

Old   March 16, 2023, 09:58
Default
  #9
Member
 
zhangqiang
Join Date: Nov 2022
Posts: 43
Rep Power: 4
zhang-qiang is on a distinguished road
My modified configure file is:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% SU2 configuration file %
% Case description: Ultra coarse GGNS grid with mixed sections for testing %
% Author: Thomas D. Economon %
% Date: 2019.07.26 %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations (EULER, NAVIER_STOKES,
% TNE2_EULER, TNE2_NAVIER_STOKES,
% WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY,
% POISSON_EQUATION)
SOLVER= INC_NAVIER_STOKES
%
% Specify turbulence model (NONE, SA, SST)
KIND_TURB_MODEL= NONE
%
% Mathematical problem (DIRECT, ADJOINT)
MATH_PROBLEM= DIRECT
%
% Restart solution (NO, YES)
RESTART_SOL= NO

% ---------------- INCOMPRESSIBLE FLOW CONDITION DEFINITION -------------------%
%
% Density model within the incompressible flow solver.
% Options are CONSTANT (default), BOUSSINESQ, or VARIABLE. If VARIABLE,
% an appropriate fluid model must be selected.
INC_DENSITY_MODEL= CONSTANT
%
% Solve the energy equation in the incompressible flow solver
INC_ENERGY_EQUATION = NO
%
% Initial density for incompressible flows
% (1.2886 kg/m^3 by default (air), 998.2 Kg/m^3 (water))
INC_DENSITY_INIT= 998.2
%
% Initial velocity for incompressible flows (1.0,0,0 m/s by default)
INC_VELOCITY_INIT= ( 0.001, 0.0, 0.0 )
%
% Initial temperature for incompressible flows that include the
% energy equation (288.15 K by default). Value is ignored if
% INC_ENERGY_EQUATION is false.
INC_TEMPERATURE_INIT= 288.15
%
% Non-dimensionalization scheme for incompressible flows. Options are
% INITIAL_VALUES (default), REFERENCE_VALUES, or DIMENSIONAL.
% INC_*_REF values are ignored unless REFERENCE_VALUES is chosen.
INC_NONDIM= INITIAL_VALUES
%
% Reference density for incompressible flows (1.0 kg/m^3 by default)
INC_DENSITY_REF= 1.0
%
% Reference velocity for incompressible flows (1.0 m/s by default)
INC_VELOCITY_REF= 1.0
%
% Reference temperature for incompressible flows that include the
% energy equation (1.0 K by default)
INC_TEMPERATURE_REF = 1.0
%
% List of inlet types for incompressible flows. List length must
% match number of inlet markers. Options: VELOCITY_INLET, PRESSURE_INLET.
INC_INLET_TYPE= VELOCITY_INLET
%
% Damping coefficient for iterative updates at pressure inlets. (0.1 by default)
INC_INLET_DAMPING= 0.1
%
% List of outlet types for incompressible flows. List length must
% match number of outlet markers. Options: PRESSURE_OUTLET, MASS_FLOW_OUTLET
INC_OUTLET_TYPE= PRESSURE_OUTLET PRESSURE_OUTLET
%
% Damping coefficient for iterative updates at mass flow outlets. (0.1 by default)
INC_OUTLET_DAMPING= 0.1

% --------------------------- VISCOSITY MODEL ---------------------------------%
%
% Viscosity model (SUTHERLAND, CONSTANT_VISCOSITY, POLYNOMIAL_VISCOSITY).
VISCOSITY_MODEL= CONSTANT_VISCOSITY
%
% Molecular Viscosity that would be constant (1.716E-5 by default)
MU_CONSTANT= 3E-3

% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation (m or in)
REF_ORIGIN_MOMENT_X = 0.25
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 0.00
%
% Reference length for pitching, rolling, and yawing non-dimensional moment (m or in)
REF_LENGTH= 1.0
%
% Reference area for force coefficients (0 implies automatic calculation) (m^2 or in^2)
REF_AREA= 1.0

% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
% Navier-Stokes (no-slip), constant heat flux wall marker(s) (NONE = no marker)
% Format: ( marker name, constant heat flux (J/m^2), ... )
MARKER_HEATFLUX= (wall0, 0.0)
%
% Inlet boundary marker(s) with the following formats (NONE = no marker)
% Inc. Pressure: (inlet marker, temperature, total pressure, flow_direction_x,
% flow_direction_y, flow_direction_z, ... ) where flow_direction is
% a unit vector.
MARKER_INLET= (inlet1, 288.15, 0.1, 1.487046, -9.200968, 3.623656)
%
% Outlet boundary marker(s) (NONE = no marker)
% Compressible: ( outlet marker, back pressure (static thermodynamic), ... )
% Inc. Pressure: ( outlet marker, back pressure (static gauge in Pa), ... )
% Inc. Mass Flow: ( outlet marker, mass flow target (kg/s), ... )
MARKER_OUTLET= (outlet2, 0.0,outlet3, 0.0)
%
% Symmetry boundary marker(s) (NONE = no marker)
MARKER_SYM= ( NONE )
%
% Marker(s) of the surface in the surface flow solution file
MARKER_PLOTTING = ( wall0, inlet1, outlet2, outlet3 )
%
% Marker(s) of the surface where the non-dimensional coefficients are evaluated.
MARKER_MONITORING = ( wall0, inlet1, outlet2, outlet3 )

% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= GREEN_GAUSS
%
% Courant-Friedrichs-Lewy condition of the finest grid
CFL_NUMBER= 1e2
%
% Runge-Kutta alpha coefficients
RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 )

% ------------------------ LINEAR SOLVER DEFINITION ---------------------------%
%
% Linear solver or smoother for implicit formulations (BCGSTAB, FGMRES, SMOOTHER_JACOBI,
% SMOOTHER_ILU0, SMOOTHER_LUSGS,
% SMOOTHER_LINELET)
LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (ILU0, LU_SGS, LINELET, JACOBI)
LINEAR_SOLVER_PREC= ILU
%
% Minimum error of the linear solver for implicit formulations
LINEAR_SOLVER_ERROR= 1E-15
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 5

% -------------------------- MULTIGRID PARAMETERS -----------------------------%
%
% Multi-grid Levels (0 = no multi-grid)
MGLEVEL= 0
%
% Multi-grid Cycle (0 = V cycle, 1 = W Cycle)
%
% Multi-grid pre-smoothing level
MG_PRE_SMOOTH= ( 1, 2, 3, 3 )
%
% Multi-grid post-smoothing level
MG_POST_SMOOTH= ( 0, 0, 0, 0 )
%
% Jacobi implicit smoothing of the correction
MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 )
%
% Damping factor for the residual restriction
MG_DAMP_RESTRICTION= 0.75
%
% Damping factor for the correction prolongation
MG_DAMP_PROLONGATION= 0.75


% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
% TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= FDS
%
% Monotonic Upwind Scheme for Conservation Laws (TVD) in the flow equations.
% Required for 2nd order upwind schemes (NO, YES)
MUSCL_FLOW= NO
INC_INLET_USENORMAL=YES
%
% Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG,
% BARTH_JESPERSEN, VAN_ALBADA_EDGE)
SLOPE_LIMITER_FLOW= NONE
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT

% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Number of total iterations
ITER= 1000
%
% Min value of the residual (log10 of the residual)
CONV_RESIDUAL_MINVAL= -8
%
% Start convergence criteria at iteration number
CONV_STARTITER= 10
%
% Number of elements to apply the criteria
CONV_CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CONV_CAUCHY_EPS= 1E-10

% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
% Mesh input file
MESH_FILENAME= VesselCFD.SU2
%
% Mesh input file format (SU2, CGNS, NETCDF_ASCII)
MESH_FORMAT= SU2
%
% Mesh output file
MESH_OUT_FILENAME= mesh_out.su2
%
% Restart flow input file
SOLUTION_FILENAME= solution_flow.dat
%
% Restart adjoint input file
SOLUTION_ADJ_FILENAME= solution_adj.dat
%
TABULAR_FORMAT= CSV
%
% Output file convergence history (w/o extension)
CONV_FILENAME= history
%
% Output file restart flow
RESTART_FILENAME= restart_flow.dat
%
% Output file restart adjoint
RESTART_ADJ_FILENAME= restart_adj.dat
%
% Output file flow (w/o extension) variables
VOLUME_FILENAME= flow
%
% Output file adjoint (w/o extension) variables
VOLUME_ADJ_FILENAME= adjoint
%
% Output Objective function
VALUE_OBJFUNC_FILENAME= of_eval.dat
%
% Output objective function gradient (using continuous adjoint)
GRAD_OBJFUNC_FILENAME= of_grad.dat
%
% Output file surface flow coefficient (w/o extension)
SURFACE_FILENAME= surface_flow
%
% Output file surface adjoint coefficient (w/o extension)
SURFACE_ADJ_FILENAME= surface_adjoint
%
% Writing solution file frequency
OUTPUT_WRT_FREQ= 1000
%
%
SCREEN_OUTPUT= (INNER_ITER, RMS_PRESSURE, RMS_VELOCITY-X, LIFT, DRAG)

My computer system is win 10, and the used SU2 is download from "SU2 for windows".

Could you please run it with this configure file again, or could you please paste your configure file?

Many thanks.

Last edited by zhang-qiang; March 16, 2023 at 20:36.
zhang-qiang is offline   Reply With Quote

Old   March 17, 2023, 07:27
Default
  #10
Senior Member
 
bigfoot
Join Date: Dec 2011
Location: Netherlands
Posts: 676
Rep Power: 21
bigfootedrockmidget is on a distinguished road
This script works for me. How does the convergence look for you?
Code:
+----------------------------------------------------------------+ 
|  Inner_Iter|      rms[P]|      rms[U]|          CL|          CD| 
+----------------------------------------------------------------+ 
|           0|   -0.039398|    1.231724|760140.323508|335757.021195| 
|           1|   -0.131981|    1.767271|1178651.769594|-396611.920129| 
|           2|   -0.446379|    1.282343|1667860.040884|-312303.488860| 
|           3|   -0.653551|    1.202774|1849616.450451|-1021473.616273| 
|           4|   -0.851566|    1.048014|2139839.671830|-1242454.552419| 
|           5|   -0.878048|    1.040472|2366586.530849|-1131992.062931| 
|           6|   -0.872402|    0.948839|2553216.733541|-872328.370051| 
|           7|   -0.892108|    0.861974|2669228.360531|-627011.080465| 
|           8|   -0.933235|    0.798989|2747952.907754|-484552.481235| 
|           9|   -0.980118|    0.750095|2860608.119171|-413869.276011| 
|          10|   -1.020490|    0.717126|3048598.796961|-373568.818428| 
|          11|   -1.049455|    0.688419|3291242.193729|-342172.267804| 
|          12|   -1.067954|    0.667032|3540550.074056|-301030.785243| 
|          13|   -1.080268|    0.660675|3761237.220824|-235918.520764| 
|          14|   -1.090510|    0.660687|3946742.890656|-144091.785469| 
|          15|   -1.100877|    0.657810|4110023.976118|-33756.869419| 
|          16|   -1.111531|    0.652511|4267941.429005|82920.673855| 
|          17|   -1.121957|    0.648058|4431428.333863|196755.747816| 
|          18|   -1.131994|    0.645157|4602775.212595|304663.065665| 
|          19|   -1.141821|    0.642742|4778250.049224|408556.732697| 
|          20|   -1.151570|    0.639865|4952538.401081|512102.100579| 
|          21|   -1.161170|    0.636102|5121959.066574|617927.560512| 
|          22|   -1.170484|    0.631346|5285448.679906|726566.089245| 
|          23|   -1.179456|    0.625703|5443884.819367|836916.406511| 
|          24|   -1.188150|    0.619391|5598831.837501|947321.021402| 
|          25|   -1.196678|    0.612610|5751552.529906|1056471.353999|

bigfootedrockmidget is offline   Reply With Quote

Old   March 17, 2023, 12:00
Default
  #11
Member
 
zhangqiang
Join Date: Nov 2022
Posts: 43
Rep Power: 4
zhang-qiang is on a distinguished road
Sorry for my stupid question. Actually it is convergency.

I thought it is divergency because the CL increase from 760140.323508 (first iteration) to 5751552.529906 (25 iteration). Why it is so large? Is it correct?

Last edited by zhang-qiang; March 18, 2023 at 05:24.
zhang-qiang is offline   Reply With Quote

Old   March 18, 2023, 06:42
Default
  #12
Senior Member
 
bigfoot
Join Date: Dec 2011
Location: Netherlands
Posts: 676
Rep Power: 21
bigfootedrockmidget is on a distinguished road
Your pressure was nondimensionalized with the initial values. If you want to work with the dimensional values of pressure, you have to set INC_NONDIM= DIMENSIONAL, then the pressure will be in Pascal (or dimensionalize it in paraview).


For CL and CD you have to check the correct nondimensionalization as well, but CL and CD are not so useful here I think.


The pressure behavior looks OK. There is no reason to have a pressure in the aneurism that is higher than at the inlet.
bigfootedrockmidget is offline   Reply With Quote

Old   March 18, 2023, 22:09
Default
  #13
Member
 
zhangqiang
Join Date: Nov 2022
Posts: 43
Rep Power: 4
zhang-qiang is on a distinguished road
Many thanks for your kindly reply~~~~
zhang-qiang is offline   Reply With Quote

Reply

Tags
diverged


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
SU2 example job on multiple nodes creates incorrect result merijn SU2 Installation 0 December 14, 2018 09:58
Tool to download: SU2 post-processing Combas SU2 2 June 5, 2014 15:55
best setting for SU2 mechy SU2 3 April 20, 2014 20:13
Incorrect calculation of forces/moments coefficients with older versions of SU2 diwakaranant SU2 2 August 16, 2013 05:17
SU2 suite has moved to GitHub! fpalacios SU2 News & Announcements 0 August 12, 2013 03:07


All times are GMT -4. The time now is 16:48.