CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Software User Forums > SU2

Turbulent NACA 64-A010 stability response problem

Register Blogs Community New Posts Updated Threads Search

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   December 1, 2020, 14:26
Default Turbulent NACA 64-A010 stability response problem
  #1
New Member
 
Kevin Wittkowski
Join Date: Sep 2020
Posts: 14
Rep Power: 6
kiloWatt is on a distinguished road
https://drive.google.com/drive/folde...Wb?usp=sharing

Dear all,
I have a problem with my simulation: I would like to simulate the aeroelastic response of a NACA64A010 airfoil in viscous turbulent transonic flow (Ma=0.8, flutter speed index=1.5)
Here you can find my configuration file

Code:
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations (EULER, NAVIER_STOKES,
%                               WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY,
%                               POISSON_EQUATION)
SOLVER= RANS
%
% Specify turbulent model (NONE, SA, SA_NEG, SST)
KIND_TURB_MODEL= SA
%
% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT)
MATH_PROBLEM= DIRECT
%
% Write binary restart files (YES, NO)
WRT_BINARY_RESTART= NO
%
% Read binary restart files (YES, NO)
READ_BINARY_RESTART= NO
%
%
% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------%
%
% Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE,
%                              FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE)
REF_DIMENSIONALIZATION= DIMENSIONAL
%
% Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 0.8
%
% Angle of attack (degrees, only for compressible flows)
AOA= 0.0
%
% Free-stream option to choose between density and temperature (default) for
% initializing the solution (TEMPERATURE_FS, DENSITY_FS)
INIT_OPTION=TD_CONDITIONS
FREESTREAM_OPTION= TEMPERATURE_FS
%
% Free-stream temperature (288.15 K by default)
FREESTREAM_TEMPERATURE= 1312.188
FREESTREAM_PRESSURE=315850.322
REYNOLDS_NUMBER=10000000
REYNOLDS_LENGTH=1.0
%
% ---- IDEAL GAS, POLYTROPIC, VAN DER WAALS AND PENG ROBINSON CONSTANTS -------%
%
% Different gas model (STANDARD_AIR, IDEAL_GAS, VW_GAS, PR_GAS)
FLUID_MODEL= IDEAL_GAS
%
% --------------------------- VISCOSITY MODEL ---------------------------------%
%
% Viscosity model (SUTHERLAND, CONSTANT_VISCOSITY).
VISCOSITY_MODEL= SUTHERLAND
%
% --------------------------- THERMAL CONDUCTIVITY MODEL ----------------------%
%
% Conductivity model (CONSTANT_CONDUCTIVITY, CONSTANT_PRANDTL).
CONDUCTIVITY_MODEL= CONSTANT_PRANDTL
%
% Laminar Prandtl number (0.72 (air), only for CONSTANT_PRANDTL)
PRANDTL_LAM= 0.72
%
% Turbulent Prandtl number (0.9 (air), only for CONSTANT_PRANDTL)
PRANDTL_TURB= 0.90

% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation (m or in)
REF_ORIGIN_MOMENT_X = -0.5
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 0.00
%
% Reference length for pitching, rolling, and yawing non-dimensional
% moment (m or in)
REF_LENGTH= 1.0
%
% Reference area for force coefficients (0 implies automatic
% calculation) (m^2 or in^2)
REF_AREA= 1.0
%

% ------------------------- UNSTEADY SIMULATION -------------------------------%
%
% Time domain
TIME_DOMAIN=YES
%
% Unsteady simulation (NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER, 
%                      DUAL_TIME_STEPPING-2ND_ORDER, SPECTRAL_METHOD)
TIME_MARCHING= DUAL_TIME_STEPPING-2ND_ORDER
%
% Time Step for dual time stepping simulations (s)
TIME_STEP= 0.00174532925199 
% 
% 36 steps per period, based on the pitch natural frequency
%
% Total Physical Time for dual time stepping simulations (s)
MAX_TIME= 100.0
%
% Number of internal iterations (dual time method)
INNER_ITER= 110

% ----------------------- DYNAMIC MESH DEFINITION -----------------------------%
SURFACE_MOVEMENT= AEROELASTIC
%
% Motion mach number (non-dimensional). Used for initializing a viscous flow
% with the Reynolds number and for computing force coeffs. with dynamic meshes.
MACH_MOTION= 0.8
%
% Moving wall boundary marker(s) (NONE = no marker, ignored for RIGID_MOTION)
MARKER_MOVING= ( airfoil )

% -------------- AEROELASTIC SIMULATION (Typical Section Model) ---------------%
% Activated by GRID_MOVEMENT_KIND option
%
% The flutter speed index (modifies the freestream condition in the solver)
FLUTTER_SPEED_INDEX = 1.5
%
% Natural frequency of the spring in the plunging direction (rad/s)
PLUNGE_NATURAL_FREQUENCY = 100
%
% Natural frequency of the spring in the pitching direction (rad/s)
PITCH_NATURAL_FREQUENCY = 100
%
% The airfoil mass ratio
AIRFOIL_MASS_RATIO = 60
%
% Distance in semichords by which the center of gravity lies behind
% the elastic axis
CG_LOCATION = 1.8
%
% The radius of gyration squared (expressed in semichords)
% of the typical section about the elastic axis
RADIUS_GYRATION_SQUARED = 3.48
%
% Solve the aeroelastic equations every given number of internal iterations
AEROELASTIC_ITER = 3

% --------------------------- GUST SIMULATION ---------------------------------%
%
% Apply a wind gust (NO, YES)
WIND_GUST = YES
%
% Type of gust (NONE, TOP_HAT, SINE, ONE_M_COSINE, VORTEX, EOG)
GUST_TYPE = TOP_HAT
%
% Direction of the gust (X_DIR or Y_DIR)
GUST_DIR = Y_DIR
%
% Gust wavelenght (meters)
GUST_WAVELENGTH= 7.90876841815
% 1/4 of period based on the pitch natural frequency
%
% Number of gust periods
GUST_PERIODS= 1.0
%
% Gust amplitude (m/s)
GUST_AMPL= 10.242
% Corresponds to 1 deg AoA.
%
% Time at which to begin the gust (sec)
GUST_BEGIN_TIME= 0.0
%
% Location at which the gust begins (meters) */
GUST_BEGIN_LOC= -7.90876841815

% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
% old was Euler wall boundary marker(s) (NONE = no marker)
% old was MARKER_EULER= ( airfoil )
%
% Navier-Stokes wall boundary marker(s) (NONE = no marker)
MARKER_HEATFLUX= ( airfoil, 0.0)
%
% Far-field boundary marker(s) (NONE = no marker)
MARKER_FAR= ( farfield )

% ------------------------ SURFACES IDENTIFICATION ----------------------------%
%
% Marker(s) of the surface in the surface flow solution file
MARKER_PLOTTING = ( airfoil )
%
% Marker(s) of the surface where the non-dimensional coefficients are evaluated.
MARKER_MONITORING = ( airfoil )

% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= GREEN_GAUSS 
%
% CFL number (stating value for the adaptive CFL number)
CFL_NUMBER= 4.0

% ------------------------ LINEAR SOLVER DEFINITION ---------------------------%
%
% Linear solver or smoother for implicit formulations (BCGSTAB, FGMRES, SMOOTHER)
LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (ILU, LU_SGS, LINELET, JACOBI)
LINEAR_SOLVER_PREC= LU_SGS
%
% Minimum error of the linear solver for implicit formulations
LINEAR_SOLVER_ERROR= 1E-4
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 5

% -------------------------- MULTIGRID PARAMETERS -----------------------------%
%
% Multi-grid levels (0 = no multi-grid)
MGLEVEL= 3
%
% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE)
MGCYCLE= W_CYCLE
%
% Multi-grid pre-smoothing level
MG_PRE_SMOOTH= ( 1, 2, 3, 3 )
%
% Multi-grid post-smoothing level
MG_POST_SMOOTH= ( 0, 0, 0, 0 )
%
% Jacobi implicit smoothing of the correction
MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 )
%
% Damping factor for the residual restriction
MG_DAMP_RESTRICTION= 0.75
%
% Damping factor for the correction prolongation
MG_DAMP_PROLONGATION= 0.75

% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
%                              TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= JST
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
MUSCL_FLOW= YES
%
% Slope limiter (VENKATAKRISHNAN, BARTH_JESPERSEN)
SLOPE_LIMITER_FLOW= VENKATAKRISHNAN
%
% Entropy fix coefficient (0.0 implies no entropy fixing, 1.0 implies scalar
%                          artificial dissipation)
ENTROPY_FIX_COEFF= 0.001
%
% 2nd and 4th order artificial dissipation coefficients
JST_SENSOR_COEFF= ( 0.5, 0.02 )
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT

% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------%
%
% Convective numerical method (SCALAR_UPWIND)
CONV_NUM_METHOD_TURB= SCALAR_UPWIND
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
%
MUSCL_TURB= NO
%
% Time discretization (EULER_IMPLICIT)
TIME_DISCRE_TURB= EULER_IMPLICIT

% ------------------------ GRID DEFORMATION PARAMETERS ------------------------%
%
% Linear solver or smoother for implicit formulations (FGMRES, RESTARTED_FGMRES, BCGSTAB)
DEFORM_LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (ILU, LU_SGS, JACOBI)
DEFORM_LINEAR_SOLVER_PREC= LU_SGS
%
% Number of smoothing iterations for mesh deformation
DEFORM_LINEAR_SOLVER_ITER= 500
%
% Number of nonlinear deformation iterations (surface deformation increments)
DEFORM_NONLINEAR_ITER= 1
%
% Print the residuals during mesh deformation to the console (YES, NO)
DEFORM_CONSOLE_OUTPUT= NO
%
% Minimum residual criteria for the linear solver convergence of grid deformation
DEFORM_LINEAR_SOLVER_ERROR= 1E-14
%
% Type of element stiffness imposed for FEA mesh deformation (INVERSE_VOLUME, 
%                                          WALL_DISTANCE, CONSTANT_STIFFNESS)
DEFORM_STIFFNESS_TYPE= INVERSE_VOLUME
%
% Visualize the surface deformation (NO, YES)
VISUALIZE_SURFACE_DEF= NO
%
% Visualize the volume deformation (NO, YES)
VISUALIZE_VOLUME_DEF= NO

% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Number of total iterations
TIME_ITER= 720
%
% Convergence criteria (CAUCHY, RESIDUAL)
%
CONV_CRITERIA= RESIDUAL
%
% Field to apply Cauchy Criterion to
CONV_FIELD= REL_RMS_DENSITY
%
% Min value of the residual (log10 of the residual)
CONV_RESIDUAL_MINVAL= -8
%
% Start convergence criteria at iteration number
CONV_STARTITER= 0
%
% Number of elements to apply the criteria
CONV_CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CONV_CAUCHY_EPS= 1E-10
%

% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
% Mesh input file
MESH_FILENAME= NACA64A010v6.su2
%
% Mesh input file format (SU2, CGNS)
MESH_FORMAT= SU2
%
% Restart flow input file
SOLUTION_FILENAME= solution_flow.dat
%
% Output file format (TECPLOT, TECPLOT_BINARY, PARAVIEW,
%                     FIELDVIEW, FIELDVIEW_BINARY)
TABULAR_FORMAT= CSV
%
% Output file convergence history (w/o extension) 
CONV_FILENAME= history
%
% Output file restart flow
RESTART_FILENAME= restart_flow.dat
%
% Output file flow (w/o extension) variables
VOLUME_FILENAME= flow
%
% Output file surface flow coefficient (w/o extension)
SURFACE_FILENAME= surface_flow
%
% Writing solution file frequency
WRT_SOL_FREQ= 1000
%
OUTPUT_FILES= (RESTART,CSV,SURFACE_CSV,SURFACE_PARAVIEW,PARAVIEW)
% Writing solution file frequency for physical time steps (dual time)
WRT_SOL_FREQ_DUALTIME= 1000
%
% Writing convergence history frequency
WRT_CON_FREQ= 1
%
% Writing convergence history frequency (dual time, only written to screen)
WRT_CON_FREQ_DUALTIME= 1
%
% Screen output
SCREEN_OUTPUT= (TIME_ITER, INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG_ON_SURFACE, PLUNGE, PITCH) 
%
% history output
HISTORY_OUTPUT=(ITER, TIME_DOMAIN, REL_RMS_RES, RMS_RES, AERO_COEFF, TAVG_AERO_COEFF, CAUCHY,AEROELASTIC)
and I attach the files I am using. My problem is that -given Mach and flutter index- I should get an unstable aeroelastic response (i.e. the flutter should increase in amplitude), but instead I get always a stable response.

Could you please help me? I really tried to change everything, but the problem is always there.

Thank you in advance

Kevin
kiloWatt is offline   Reply With Quote

Reply

Tags
aeroelastic, flutter, naca 64-a010, su2, unstable behaviour


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
SU2-7.0.1 on ubuntu 18.04 hyunko SU2 Installation 7 March 16, 2020 05:37
BouyantBussinesqSimpleFoam: BC definition and stability problem mathew1105 OpenFOAM Running, Solving & CFD 0 June 30, 2019 14:20
Having problem with turbulent flow over a forward facing step eskadran CFX 0 August 31, 2015 18:10
Problem of Turbulent Viscosity Ratio Limited David Yang FLUENT 3 June 3, 2002 07:13
the turbulent problem Daejin, Kang Main CFD Forum 0 November 16, 1998 11:52


All times are GMT -4. The time now is 16:37.