|
[Sponsors] |
Ahmed body simulation gives unexpected results in su2 6.0 |
|
LinkBack | Thread Tools | Search this Thread | Display Modes |
March 28, 2018, 04:42 |
Ahmed body simulation gives unexpected results in su2 6.0
|
#1 |
New Member
Anas Sahazubir
Join Date: May 2017
Posts: 1
Rep Power: 0 |
Hi all,
I've used the su2 v5, and run ahmed body simulation and it run perfectly, and gives me an expected results. However when i switched to su2 v6.0, i couldn't get similar results. So i went to the testcases and tried to run the simulation and it did not give a better results. What can be done to improve the results? I have attached the convergence and the code below. Code:
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% % % Physical governing equations (EULER, NAVIER_STOKES, % WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY, % POISSON_EQUATION) PHYSICAL_PROBLEM= NAVIER_STOKES % % Specify turbulence model (NONE, SA, SA_NEG, SST) KIND_TURB_MODEL= SST % % Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) MATH_PROBLEM= DIRECT % % Restart solution (NO, YES) RESTART_SOL= NO % % Regime type (COMPRESSIBLE, INCOMPRESSIBLE) REGIME_TYPE= INCOMPRESSIBLE % % System of measurements (SI, US) % International system of units (SI): meters, kilograms, Kelvins, Newtons = kg m/s^2, Pascals = N/m^2, Density = kg/m^3, Speed = m/s % United States customary units (US): inches, slug, Rankines, lbf = slug ft/s^2, psf = lbf/ft^2, Density = slug/ft^3, Speed = ft/s SYSTEM_MEASUREMENTS= SI % -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------% % % Mach number (non-dimensional, based on the free-stream values) MACH_NUMBER= 0.1728 % % Angle of attack (degrees, only for compressible flows) AOA= 0.0 % % Side-slip angle (degrees, only for compressible flows) SIDESLIP_ANGLE= 0.0 % % Free-stream pressure (101325.0 N/m^2, 2116.216 psf by default) FREESTREAM_PRESSURE= 101325.0 % % Free-stream temperature (288.15 K, 518.67 R by default) FREESTREAM_TEMPERATURE= 300 % % Reynolds number (non-dimensional, based on the free-stream values) REYNOLDS_NUMBER= 4.29E6 % % Reynolds length (1 m, 1 inch by default) REYNOLDS_LENGTH= 1.044 % -------------------- INCOMPRESSIBLE FREE-STREAM DEFINITION ------------------% % % Free-stream density (1.2886 Kg/m^3, 0.0025 slug/ft^3 by default) FREESTREAM_DENSITY= 1.2642 % % Free-stream velocity (1.0 m/s, 1.0 ft/s by default) FREESTREAM_VELOCITY= ( 60.0, 0.00, 0.00 ) % % Free-stream viscosity (1.853E-5 N s/m^2, 3.87E-7 lbf s/ft^2 by default) FREESTREAM_VISCOSITY= 1.845E-5 % ---------------------- REFERENCE VALUE DEFINITION ---------------------------% % % Reference origin for moment computation REF_ORIGIN_MOMENT_X = 10.69 REF_ORIGIN_MOMENT_Y = 0.00 REF_ORIGIN_MOMENT_Z = 0.00 % % Reference length for pitching, rolling, and yawing non-dimensional moment REF_LENGTH= 1.044 % % Reference area for force coefficients (0 implies automatic calculation) REF_AREA= 0.112032 % ------------------------- UNSTEADY SIMULATION -------------------------------% % % Unsteady simulation (NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER, % DUAL_TIME_STEPPING-2ND_ORDER) UNSTEADY_SIMULATION= NO % % Time Step for dual time stepping simulations (s) UNST_TIMESTEP= 0.0 % % Total Physical Time for dual time stepping simulations (s) UNST_TIME= 50.0 % % Unsteady Courant-Friedrichs-Lewy number of the finest grid UNST_CFL_NUMBER= 0.0 % % Number of internal iterations (dual time method) UNST_INT_ITER= 200 % % % Iteration number to begin unsteady restarts UNST_RESTART_ITER= 0 % -------------------- BOUNDARY CONDITION DEFINITION --------------------------% % % Navier-Stokes (no-slip), constant heat flux wall marker(s) (NONE = no marker) % Format: ( marker name, constant heat flux (J/m^2), ... ) MARKER_HEATFLUX= ( body, 0.0, z0, 0.0 ) % % Far-field boundary marker(s) (NONE = no marker) MARKER_FAR= ( x1, x0, y1, y0, z1 ) % % Symmetry boundary marker(s) (NONE = no marker) MARKER_SYM= ( NONE ) % ------------------------ SURFACES IDENTIFICATION ----------------------------% % % Marker(s) of the surface in the surface flow solution file MARKER_PLOTTING = ( body ) % % Marker(s) of the surface where the non-dimensional coefficients are evaluated. MARKER_MONITORING = ( body ) % % Marker(s) of the surface where obj. func. (design problem) will be evaluated MARKER_DESIGNING = ( body ) % ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% % % Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) NUM_METHOD_GRAD= GREEN_GAUSS % % Objective function in gradient evaluation (DRAG, LIFT, SIDEFORCE, MOMENT_X, % MOMENT_Y, MOMENT_Z, EFFICIENCY, % EQUIVALENT_AREA, NEARFIELD_PRESSURE, % FORCE_X, FORCE_Y, FORCE_Z, THRUST, % TORQUE, FREE_SURFACE, TOTAL_HEATFLUX, % MAXIMUM_HEATFLUX, INVERSE_DESIGN_PRESSURE, % INVERSE_DESIGN_HEATFLUX, SURFACE_TOTAL_PRESSURE, % SURFACE_MASSFLOW) OBJECTIVE_FUNCTION= DRAG % % Courant-Friedrichs-Lewy condition of the finest grid CFL_NUMBER= 4.0 % % Adaptive CFL number (NO, YES) CFL_ADAPT= NO % % Parameters of the adaptive CFL number (factor down, factor up, CFL min value, % CFL max value ) CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 10.0 ) % % Number of total iterations EXT_ITER= 5000 % ----------------------- SLOPE LIMITER DEFINITION ----------------------------% % % Coefficient for the limiter VENKAT_LIMITER_COEFF= 0.04 % % Coefficient for the sharp edges limiter ADJ_SHARP_LIMITER_COEFF= 3.0 % % Reference coefficient (sensitivity) for detecting sharp edges. REF_SHARP_EDGES= 3.0 % % Remove sharp edges from the sensitivity evaluation (NO, YES) SENS_REMOVE_SHARP= NO % ------------------------ LINEAR SOLVER DEFINITION ---------------------------% % % Linear solver for implicit formulations (BCGSTAB, FGMRES) LINEAR_SOLVER= FGMRES % % Preconditioner of the Krylov linear solver (ILU, LU_SGS, LINELET, JACOBI) LINEAR_SOLVER_PREC= LU_SGS % % Minimum error of the linear solver for implicit formulations LINEAR_SOLVER_ERROR= 1E-4 % % Max number of iterations of the linear solver for the implicit formulation LINEAR_SOLVER_ITER= 5 % -------------------------- MULTIGRID PARAMETERS -----------------------------% % % Multi-grid Levels (0 = no multi-grid) MGLEVEL= 3 % % Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE) MGCYCLE= V_CYCLE % % Multi-grid pre-smoothing level MG_PRE_SMOOTH= ( 1, 2, 3, 3 ) % % Multi-grid post-smoothing level MG_POST_SMOOTH= ( 0, 0, 0, 0 ) % % Jacobi implicit smoothing of the correction MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 ) % % Damping factor for the residual restriction MG_DAMP_RESTRICTION= 0.5 % % Damping factor for the correction prolongation MG_DAMP_PROLONGATION= 0.5 % -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% % % Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, % TURKEL_PREC, MSW) CONV_NUM_METHOD_FLOW= ROE % % Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER) MUSCL_FLOW= YES % % Slope limiter (VENKATAKRISHNAN, BARTH_JESPERSEN) SLOPE_LIMITER_FLOW= VENKATAKRISHNAN % % Entropy fix coefficient (0.0 implies no entropy fixing) ENTROPY_FIX_COEFF= 0.0 % % 2nd and 4th order artificial dissipation coefficients JST_SENSOR_COEFF= ( 0.0, 0.001 ) % % Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) TIME_DISCRE_FLOW= EULER_IMPLICIT % -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------% % % Convective numerical method (SCALAR_UPWIND) CONV_NUM_METHOD_TURB= SCALAR_UPWIND % % Monotonic Upwind Scheme for Conservation Laws (TVD) in the turbulence equations. % Required for 2nd order upwind schemes (NO, YES) MUSCL_TURB= YES % % Slope limiter (VENKATAKRISHNAN) SLOPE_LIMITER_TURB= VENKATAKRISHNAN % % Time discretization (EULER_IMPLICIT) TIME_DISCRE_TURB= EULER_IMPLICIT % % Reduction factor of the CFL coefficient in the turbulence problem CFL_REDUCTION_TURB= 1.0 % ---------------- ADJOINT-FLOW NUMERICAL METHOD DEFINITION -------------------% % % Convective numerical method (JST, LAX-FRIEDRICH, ROE) CONV_NUM_METHOD_ADJFLOW= ROE % % Monotonic Upwind Scheme for Conservation Laws (TVD) in the adjoint flow equations. % Required for 2nd order upwind schemes (NO, YES) MUSCL_ADJFLOW= YES % % Slope limiter (VENKATAKRISHNAN, SHARP_EDGES) SLOPE_LIMITER_ADJFLOW= VENKATAKRISHNAN % % 2nd, and 4th order artificial dissipation coefficients ADJ_JST_SENSOR_COEFF= ( 0.0, 0.001 ) % % Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT) TIME_DISCRE_ADJFLOW= EULER_IMPLICIT % % Reduction factor of the CFL coefficient in the adjoint problem CFL_REDUCTION_ADJFLOW= 0.1 % % Limit value for the adjoint variable LIMIT_ADJFLOW= 10000.0 % ----------------------- GEOMETRY EVALUATION PARAMETERS ----------------------% % % Marker(s) of the surface where geometrical based function will be evaluated GEO_MARKER= ( body ) % % Description of the geometry to be analyzed (AIRFOIL, WING, FUSELAGE) GEO_DESCRIPTION= FUSELAGE % % Coordinate of the stations to be analyzed GEO_LOCATION_STATIONS= (0.0, 0.5, 1.0) % % Geometrical bounds (Y coordinate) for the wing geometry analysis or % fuselage evaluation (X coordinate). GEO_BOUNDS= (-0.19, 0.19) % % Plot loads and Cp distributions on each airfoil section GEO_PLOT_STATIONS= NO % % Number of section cuts to make when calculating wing geometry GEO_NUMBER_STATIONS= 25 % % Geometrical evaluation mode (FUNCTION, GRADIENT) GEO_MODE= FUNCTION % ----------------------- DESIGN VARIABLE PARAMETERS --------------------------% % % Kind of deformation (FFD_SETTING, FFD_EDGE, FFD_CONTROL_POINT, % FFD_NACELLE, FFD_TWIST, FFD_ROTATION, % FFD_CAMBER, FFD_THICKNESS) DV_KIND= FFD_SETTING % % Marker of the surface in which we are going apply the shape deformation DV_MARKER= ( body ) % % Parameters of the shape deformation % - FFD_CONTROL_POINT ( FFD_BoxTag, i_Ind, j_Ind, k_Ind, x_Disp, y_Disp, z_Disp ) % - FFD_TWIST_ANGLE ( FFD_BoxTag, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End ) % - FFD_ROTATION ( FFD_BoxTag, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End ) % - FFD_CONTROL_SURFACE ( FFD_BoxTag, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End ) % - FFD_CAMBER ( FFD_BoxTag, i_Ind, j_Ind ) % - FFD_THICKNESS ( FFD_BoxTag, i_Ind, j_Ind ) DV_PARAM= ( REAR_BOX, 0, 0, -1, 0.0, -1.0, 0.0 ) % % Value of the shape deformation DV_VALUE= 0.005 % % Surface deformation input filename (SURFACE_FILE DV only) MOTION_FILENAME= mesh_motion.dat % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % % Number of smoothing iterations for FEA mesh deformation DEFORM_LINEAR_ITER= 500 % % Number of nonlinear deformation iterations (surface deformation increments) DEFORM_NONLINEAR_ITER= 1 % % Print the residuals during mesh deformation to the console (YES, NO) DEFORM_CONSOLE_OUTPUT= YES % % Factor to multiply smallest cell volume for deform tolerance (0.001 default) DEFORM_TOL_FACTOR = 0.001 % % Type of element stiffness imposed for FEA mesh deformation (INVERSE_VOLUME, % WALL_DISTANCE, CONSTANT_STIFFNESS) DEFORM_STIFFNESS_TYPE= WALL_DISTANCE % % Visualize the deformation (NO, YES) VISUALIZE_DEFORMATION= YES % -------------------- FREE-FORM DEFORMATION PARAMETERS -----------------------% % % Tolerance of the Free-Form Deformation point inversion FFD_TOLERANCE= 1E-8 % % Maximum number of iterations in the Free-Form Deformation point inversion FFD_ITERATIONS= 500 % --------------------------- CONVERGENCE PARAMETERS --------------------------% % % Convergence criteria (CAUCHY, RESIDUAL) % CONV_CRITERIA= RESIDUAL % % Residual reduction (order of magnitude with respect to the initial value) RESIDUAL_REDUCTION= 8 % % Min value of the residual (log10 of the residual) RESIDUAL_MINVAL= -8 % % Start convergence criteria at iteration number STARTCONV_ITER= 10 % % Number of elements to apply the criteria CAUCHY_ELEMS= 100 % % Epsilon to control the series convergence CAUCHY_EPS= 1E-10 % % Direct function to apply the convergence criteria (LIFT, DRAG, NEARFIELD_PRESS) CAUCHY_FUNC_FLOW= DRAG % % Adjoint function to apply the convergence criteria (SENS_GEOMETRY, SENS_MACH) CAUCHY_FUNC_ADJFLOW= SENS_GEOMETRY % ------------------------- INPUT/OUTPUT INFORMATION --------------------------% % % Mesh input file MESH_FILENAME= AhmedBodyMesh_FFD.su2 % % Mesh input file format (SU2, CGNS, NETCDF_ASCII) MESH_FORMAT= SU2 % % Cuthill–McKee ordering algorithm (NO, YES) % % Mesh output file MESH_OUT_FILENAME= mesh_out.su2 % % Restart flow input file SOLUTION_FLOW_FILENAME= solution_flow.dat % % Restart adjoint input file SOLUTION_ADJ_FILENAME= solution_adj.dat % % Output file format (TECPLOT, PARAVIEW, TECPLOT_BINARY) OUTPUT_FORMAT= PARAVIEW % % Output file convergence history (w/o extension) CONV_FILENAME= history % % Output file restart flow RESTART_FLOW_FILENAME= restart_flow.dat % % Output file restart adjoint RESTART_ADJ_FILENAME= restart_adj.dat % % Output file flow (w/o extension) variables VOLUME_FLOW_FILENAME= flow % % Output file adjoint (w/o extension) variables VOLUME_ADJ_FILENAME= adjoint % % Output Objective function VALUE_OBJFUNC_FILENAME= of_eval.dat % % Output objective function gradient (using continuous adjoint) GRAD_OBJFUNC_FILENAME= of_grad.dat % % Output file surface flow coefficient (w/o extension) SURFACE_FLOW_FILENAME= surface_flow % % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % % Writing solution file frequency WRT_SOL_FREQ= 250 % % Writing solution file frequency for physical time steps (dual time) WRT_SOL_FREQ_DUALTIME= 1 % % Writing convergence history frequency WRT_CON_FREQ= 1 % % Writing convergence history frequency (dual time, only written to screen) WRT_CON_FREQ_DUALTIME= 10 % % Output residual values in the solution files WRT_RESIDUALS= YES % % Output limiters values in the solution files WRT_LIMITERS= NO |
|
Tags |
ahmed body, falcon, su2 |
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
SU2 Transonic Flow simulations bad results | S.Kontogiannis | SU2 | 12 | June 20, 2019 08:46 |
Simulation of UAV rotor using SU2 rotating frame | Drapier | SU2 | 0 | June 14, 2017 06:26 |
[ANSYS Meshing] Meshing Detail for Ahmed Body Simulation | spggodd | ANSYS Meshing & Geometry | 3 | March 28, 2015 19:35 |
SU2 Transonic Flow simulations bad results | S.Kontogiannis | Main CFD Forum | 8 | May 16, 2014 13:22 |
Can't get good results on ahmed body research | Michael | Main CFD Forum | 8 | September 17, 2008 14:55 |