CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Software User Forums > SU2

Ahmed body simulation gives unexpected results in su2 6.0

Register Blogs Community New Posts Updated Threads Search

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   March 28, 2018, 04:42
Default Ahmed body simulation gives unexpected results in su2 6.0
  #1
New Member
 
Anas Sahazubir
Join Date: May 2017
Posts: 1
Rep Power: 0
anas651 is on a distinguished road
Hi all,

I've used the su2 v5, and run ahmed body simulation and it run perfectly, and gives me an expected results. However when i switched to su2 v6.0, i couldn't get similar results.

So i went to the testcases and tried to run the simulation and it did not give a better results.

What can be done to improve the results?

I have attached the convergence and the code below.

Code:
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations (EULER, NAVIER_STOKES,
%                               WAVE_EQUATION, HEAT_EQUATION, FEM_ELASTICITY,
%                               POISSON_EQUATION)
PHYSICAL_PROBLEM= NAVIER_STOKES
%
% Specify turbulence model (NONE, SA, SA_NEG, SST)
KIND_TURB_MODEL= SST
%
% Mathematical problem (DIRECT, CONTINUOUS_ADJOINT)
MATH_PROBLEM= DIRECT
%
% Restart solution (NO, YES)
RESTART_SOL= NO
%
% Regime type (COMPRESSIBLE, INCOMPRESSIBLE)
REGIME_TYPE= INCOMPRESSIBLE
%
% System of measurements (SI, US)
% International system of units (SI): meters, kilograms, Kelvins,  Newtons = kg m/s^2, Pascals = N/m^2, Density = kg/m^3,    Speed = m/s
% United States customary units (US): inches, slug,      Rankines, lbf = slug ft/s^2,  psf = lbf/ft^2,  Density = slug/ft^3, Speed = ft/s
SYSTEM_MEASUREMENTS= SI

% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------%
%
% Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 0.1728
%
% Angle of attack (degrees, only for compressible flows)
AOA= 0.0
%
% Side-slip angle (degrees, only for compressible flows)
SIDESLIP_ANGLE= 0.0
%
% Free-stream pressure (101325.0 N/m^2, 2116.216 psf by default)
FREESTREAM_PRESSURE= 101325.0
%
% Free-stream temperature (288.15 K, 518.67 R by default)
FREESTREAM_TEMPERATURE= 300
%
% Reynolds number (non-dimensional, based on the free-stream values)
REYNOLDS_NUMBER= 4.29E6
%
% Reynolds length (1 m, 1 inch by default)
REYNOLDS_LENGTH= 1.044

% -------------------- INCOMPRESSIBLE FREE-STREAM DEFINITION ------------------%
%
% Free-stream density (1.2886 Kg/m^3, 0.0025 slug/ft^3 by default)
FREESTREAM_DENSITY= 1.2642
%
% Free-stream velocity (1.0 m/s, 1.0 ft/s by default)
FREESTREAM_VELOCITY= ( 60.0, 0.00, 0.00 )
%
% Free-stream viscosity (1.853E-5 N s/m^2, 3.87E-7 lbf s/ft^2 by default)
FREESTREAM_VISCOSITY= 1.845E-5

% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation
REF_ORIGIN_MOMENT_X = 10.69
REF_ORIGIN_MOMENT_Y =  0.00
REF_ORIGIN_MOMENT_Z =  0.00
%
% Reference length for pitching, rolling, and yawing non-dimensional moment
REF_LENGTH= 1.044
%
% Reference area for force coefficients (0 implies automatic calculation)
REF_AREA= 0.112032

% ------------------------- UNSTEADY SIMULATION -------------------------------%
%
% Unsteady simulation (NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER, 
%                      DUAL_TIME_STEPPING-2ND_ORDER)
UNSTEADY_SIMULATION= NO
%
% Time Step for dual time stepping simulations (s)
UNST_TIMESTEP= 0.0
%
% Total Physical Time for dual time stepping simulations (s)
UNST_TIME= 50.0
%
% Unsteady Courant-Friedrichs-Lewy number of the finest grid
UNST_CFL_NUMBER= 0.0
%
% Number of internal iterations (dual time method)
UNST_INT_ITER= 200
%
%
% Iteration number to begin unsteady restarts
UNST_RESTART_ITER= 0

% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
% Navier-Stokes (no-slip), constant heat flux wall  marker(s) (NONE = no marker)
% Format: ( marker name, constant heat flux (J/m^2), ... )
MARKER_HEATFLUX= ( body, 0.0, z0, 0.0 )
%
% Far-field boundary marker(s) (NONE = no marker)
MARKER_FAR= ( x1, x0, y1, y0, z1 )
%
% Symmetry boundary marker(s) (NONE = no marker)
MARKER_SYM= ( NONE )

% ------------------------ SURFACES IDENTIFICATION ----------------------------%
%
% Marker(s) of the surface in the surface flow solution file
MARKER_PLOTTING = ( body )
%
% Marker(s) of the surface where the non-dimensional coefficients are evaluated.
MARKER_MONITORING = ( body )
%
% Marker(s) of the surface where obj. func. (design problem) will be evaluated
MARKER_DESIGNING = ( body )

% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= GREEN_GAUSS
%
% Objective function in gradient evaluation  (DRAG, LIFT, SIDEFORCE, MOMENT_X,
%                                             MOMENT_Y, MOMENT_Z, EFFICIENCY,
%                                             EQUIVALENT_AREA, NEARFIELD_PRESSURE,
%                                             FORCE_X, FORCE_Y, FORCE_Z, THRUST,
%                                             TORQUE, FREE_SURFACE, TOTAL_HEATFLUX,
%                                             MAXIMUM_HEATFLUX, INVERSE_DESIGN_PRESSURE,
%                                             INVERSE_DESIGN_HEATFLUX, SURFACE_TOTAL_PRESSURE, 
%                                             SURFACE_MASSFLOW)
OBJECTIVE_FUNCTION= DRAG
%
% Courant-Friedrichs-Lewy condition of the finest grid
CFL_NUMBER= 4.0
%
% Adaptive CFL number (NO, YES)
CFL_ADAPT= NO
%
% Parameters of the adaptive CFL number (factor down, factor up, CFL min value,
%                                        CFL max value )
CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 10.0 )
%
% Number of total iterations
EXT_ITER= 5000

% ----------------------- SLOPE LIMITER DEFINITION ----------------------------%
%
% Coefficient for the limiter
VENKAT_LIMITER_COEFF= 0.04
%
% Coefficient for the sharp edges limiter
ADJ_SHARP_LIMITER_COEFF= 3.0
%
% Reference coefficient (sensitivity) for detecting sharp edges.
REF_SHARP_EDGES= 3.0
%
% Remove sharp edges from the sensitivity evaluation (NO, YES)
SENS_REMOVE_SHARP= NO

% ------------------------ LINEAR SOLVER DEFINITION ---------------------------%
%
% Linear solver for implicit formulations (BCGSTAB, FGMRES)
LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (ILU, LU_SGS, LINELET, JACOBI)
LINEAR_SOLVER_PREC= LU_SGS
%
% Minimum error of the linear solver for implicit formulations
LINEAR_SOLVER_ERROR= 1E-4
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 5

% -------------------------- MULTIGRID PARAMETERS -----------------------------%
%
% Multi-grid Levels (0 = no multi-grid)
MGLEVEL= 3
%
% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE)
MGCYCLE= V_CYCLE
%
% Multi-grid pre-smoothing level
MG_PRE_SMOOTH= ( 1, 2, 3, 3 )
%
% Multi-grid post-smoothing level
MG_POST_SMOOTH= ( 0, 0, 0, 0 )
%
% Jacobi implicit smoothing of the correction
MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 )
%
% Damping factor for the residual restriction
MG_DAMP_RESTRICTION= 0.5
%
% Damping factor for the correction prolongation
MG_DAMP_PROLONGATION= 0.5

% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
%                              TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= ROE
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
MUSCL_FLOW= YES
%
% Slope limiter (VENKATAKRISHNAN, BARTH_JESPERSEN)
SLOPE_LIMITER_FLOW= VENKATAKRISHNAN
%
% Entropy fix coefficient (0.0 implies no entropy fixing)
ENTROPY_FIX_COEFF= 0.0
%
% 2nd and 4th order artificial dissipation coefficients
JST_SENSOR_COEFF= ( 0.0, 0.001 )
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT

% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------%
%
% Convective numerical method (SCALAR_UPWIND)
CONV_NUM_METHOD_TURB= SCALAR_UPWIND
%
% Monotonic Upwind Scheme for Conservation Laws (TVD) in the turbulence equations.
%           Required for 2nd order upwind schemes (NO, YES)
MUSCL_TURB= YES
%
% Slope limiter (VENKATAKRISHNAN)
SLOPE_LIMITER_TURB= VENKATAKRISHNAN
%
% Time discretization (EULER_IMPLICIT)
TIME_DISCRE_TURB= EULER_IMPLICIT
%
% Reduction factor of the CFL coefficient in the turbulence problem
CFL_REDUCTION_TURB= 1.0

% ---------------- ADJOINT-FLOW NUMERICAL METHOD DEFINITION -------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, ROE)
CONV_NUM_METHOD_ADJFLOW= ROE
%
% Monotonic Upwind Scheme for Conservation Laws (TVD) in the adjoint flow equations.
%           Required for 2nd order upwind schemes (NO, YES)
MUSCL_ADJFLOW= YES
%
% Slope limiter (VENKATAKRISHNAN, SHARP_EDGES)
SLOPE_LIMITER_ADJFLOW= VENKATAKRISHNAN
%
% 2nd, and 4th order artificial dissipation coefficients
ADJ_JST_SENSOR_COEFF= ( 0.0, 0.001 )
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT)
TIME_DISCRE_ADJFLOW= EULER_IMPLICIT
%
% Reduction factor of the CFL coefficient in the adjoint problem
CFL_REDUCTION_ADJFLOW= 0.1
%
% Limit value for the adjoint variable
LIMIT_ADJFLOW= 10000.0

% ----------------------- GEOMETRY EVALUATION PARAMETERS ----------------------%
%
% Marker(s) of the surface where geometrical based function will be evaluated
GEO_MARKER= ( body )
%
% Description of the geometry to be analyzed (AIRFOIL, WING, FUSELAGE)
GEO_DESCRIPTION= FUSELAGE
%
% Coordinate of the stations to be analyzed
GEO_LOCATION_STATIONS= (0.0, 0.5, 1.0)
%
% Geometrical bounds (Y coordinate) for the wing geometry analysis or
% fuselage evaluation (X coordinate).
GEO_BOUNDS= (-0.19, 0.19)
%
% Plot loads and Cp distributions on each airfoil section
GEO_PLOT_STATIONS= NO
%
% Number of section cuts to make when calculating wing geometry
GEO_NUMBER_STATIONS= 25
%
% Geometrical evaluation mode (FUNCTION, GRADIENT)
GEO_MODE= FUNCTION

% ----------------------- DESIGN VARIABLE PARAMETERS --------------------------%
%
% Kind of deformation (FFD_SETTING, FFD_EDGE, FFD_CONTROL_POINT, 
%                      FFD_NACELLE, FFD_TWIST, FFD_ROTATION,
%                      FFD_CAMBER, FFD_THICKNESS)
DV_KIND= FFD_SETTING
%
% Marker of the surface in which we are going apply the shape deformation
DV_MARKER= ( body )
%
% Parameters of the shape deformation
% - FFD_CONTROL_POINT ( FFD_BoxTag, i_Ind, j_Ind, k_Ind, x_Disp, y_Disp, z_Disp )
% - FFD_TWIST_ANGLE ( FFD_BoxTag, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End )
% - FFD_ROTATION ( FFD_BoxTag, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End )
% - FFD_CONTROL_SURFACE ( FFD_BoxTag, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End )
% - FFD_CAMBER ( FFD_BoxTag, i_Ind, j_Ind )
% - FFD_THICKNESS ( FFD_BoxTag, i_Ind, j_Ind )
DV_PARAM= ( REAR_BOX, 0, 0, -1, 0.0, -1.0, 0.0 )
%
% Value of the shape deformation
DV_VALUE= 0.005
%
% Surface deformation input filename (SURFACE_FILE DV only)
MOTION_FILENAME= mesh_motion.dat

% ------------------------ GRID DEFORMATION PARAMETERS ------------------------%
%
% Number of smoothing iterations for FEA mesh deformation
DEFORM_LINEAR_ITER= 500
%
% Number of nonlinear deformation iterations (surface deformation increments)
DEFORM_NONLINEAR_ITER= 1
%
% Print the residuals during mesh deformation to the console (YES, NO)
DEFORM_CONSOLE_OUTPUT= YES
%
% Factor to multiply smallest cell volume for deform tolerance (0.001 default)
DEFORM_TOL_FACTOR = 0.001
%
% Type of element stiffness imposed for FEA mesh deformation (INVERSE_VOLUME, 
%                                          WALL_DISTANCE, CONSTANT_STIFFNESS)
DEFORM_STIFFNESS_TYPE= WALL_DISTANCE
%
% Visualize the deformation (NO, YES)
VISUALIZE_DEFORMATION= YES

% -------------------- FREE-FORM DEFORMATION PARAMETERS -----------------------%
%
% Tolerance of the Free-Form Deformation point inversion
FFD_TOLERANCE= 1E-8
%
% Maximum number of iterations in the Free-Form Deformation point inversion
FFD_ITERATIONS= 500

% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Convergence criteria (CAUCHY, RESIDUAL)
%
CONV_CRITERIA= RESIDUAL
%
% Residual reduction (order of magnitude with respect to the initial value)
RESIDUAL_REDUCTION= 8
%
% Min value of the residual (log10 of the residual)
RESIDUAL_MINVAL= -8
%
% Start convergence criteria at iteration number
STARTCONV_ITER= 10
%
% Number of elements to apply the criteria
CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CAUCHY_EPS= 1E-10
%
% Direct function to apply the convergence criteria (LIFT, DRAG, NEARFIELD_PRESS)
CAUCHY_FUNC_FLOW= DRAG
%
% Adjoint function to apply the convergence criteria (SENS_GEOMETRY, SENS_MACH)
CAUCHY_FUNC_ADJFLOW= SENS_GEOMETRY

% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
% Mesh input file
MESH_FILENAME= AhmedBodyMesh_FFD.su2
%
% Mesh input file format (SU2, CGNS, NETCDF_ASCII)
MESH_FORMAT= SU2
%
% Cuthill–McKee ordering algorithm (NO, YES)
%
% Mesh output file
MESH_OUT_FILENAME= mesh_out.su2
%
% Restart flow input file
SOLUTION_FLOW_FILENAME= solution_flow.dat
%
% Restart adjoint input file
SOLUTION_ADJ_FILENAME= solution_adj.dat
%
% Output file format (TECPLOT, PARAVIEW, TECPLOT_BINARY)
OUTPUT_FORMAT= PARAVIEW
%
% Output file convergence history (w/o extension) 
CONV_FILENAME= history
%
% Output file restart flow
RESTART_FLOW_FILENAME= restart_flow.dat
%
% Output file restart adjoint
RESTART_ADJ_FILENAME= restart_adj.dat
%
% Output file flow (w/o extension) variables
VOLUME_FLOW_FILENAME= flow
%
% Output file adjoint (w/o extension) variables
VOLUME_ADJ_FILENAME= adjoint
%
% Output Objective function
VALUE_OBJFUNC_FILENAME= of_eval.dat
%
% Output objective function gradient (using continuous adjoint)
GRAD_OBJFUNC_FILENAME= of_grad.dat
%
% Output file surface flow coefficient (w/o extension)
SURFACE_FLOW_FILENAME= surface_flow
%
% Output file surface adjoint coefficient (w/o extension)
SURFACE_ADJ_FILENAME= surface_adjoint
%
% Writing solution file frequency
WRT_SOL_FREQ= 250
%
% Writing solution file frequency for physical time steps (dual time)
WRT_SOL_FREQ_DUALTIME= 1
%
% Writing convergence history frequency
WRT_CON_FREQ= 1
%
% Writing convergence history frequency (dual time, only written to screen)
WRT_CON_FREQ_DUALTIME= 10
%
% Output residual values in the solution files
WRT_RESIDUALS= YES
%
% Output limiters values in the solution files
WRT_LIMITERS= NO
Attached Images
File Type: png convergence.png (31.2 KB, 25 views)
anas651 is offline   Reply With Quote

Reply

Tags
ahmed body, falcon, su2


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
SU2 Transonic Flow simulations bad results S.Kontogiannis SU2 12 June 20, 2019 08:46
Simulation of UAV rotor using SU2 rotating frame Drapier SU2 0 June 14, 2017 06:26
[ANSYS Meshing] Meshing Detail for Ahmed Body Simulation spggodd ANSYS Meshing & Geometry 3 March 28, 2015 19:35
SU2 Transonic Flow simulations bad results S.Kontogiannis Main CFD Forum 8 May 16, 2014 13:22
Can't get good results on ahmed body research Michael Main CFD Forum 8 September 17, 2008 14:55


All times are GMT -4. The time now is 00:38.