|
[Sponsors] |
December 26, 2016, 02:08 |
cannot run naca0012 case using JST
|
#1 |
New Member
Join Date: Dec 2016
Posts: 1
Rep Power: 0 |
Try to repeat the NACA 0012 case in AIAA 201400243, but JST schemes does not work right. Is there somthing wrong with my configuration?
Thanks, Paulo %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % SU2 configuration file % % Case description: 2D NACA 0012 Airfoil Validation Case (compressible) % % http://turbmodels.larc.nasa.gov/naca0012_val_sa.html % % Author: Francisco Palacios % % Institution: Stanford University % % Date: Feb 18th, 2013 % % File Version 3.2.1 "eagle" % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% % % Physical governing equations (EULER, NAVIER_STOKES, % WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, % POISSON_EQUATION) PHYSICAL_PROBLEM= NAVIER_STOKES % % Specify turbulent model (NONE, SA, SA_NEG, SST) KIND_TURB_MODEL= SA % % Mathematical problem (DIRECT, CONTINUOUS_ADJOINT) MATH_PROBLEM= DIRECT % % Restart solution (NO, YES) RESTART_SOL= NO % % Minimize the required output memory LOW_MEMORY_OUTPUT= NO % % System of measurements (SI, US) % International system of units (SI): ( meters, kilograms, Kelvins, % Newtons = kg m/s^2, Pascals = N/m^2, % Density = kg/m^3, Speed = m/s, % Equiv. Area = m^2 ) % United States customary units (US): ( inches, slug, Rankines, lbf = slug ft/s^2, % psf = lbf/ft^2, Density = slug/ft^3, % Speed = ft/s, Equiv. Area = ft^2 ) SYSTEM_MEASUREMENTS= SI % % -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------% % % Mach number (non-dimensional, based on the free-stream values) MACH_NUMBER= 0.15 % % Angle of attack (degrees, only for compressible flows) AoA= 15.0 % % Activate fixed lift mode (specify a CL instead of AoA, NO/YES) FIXED_CL_MODE= NO % % Target coefficient of lift for fixed lift mode (0.0 by default) TARGET_CL= 0.0 % % Iterations to re-evaluate the angle of attack (100 by default) ITER_FIXED_CL= 100 % % Damping factor for fixed CL mode (0.1 by default) % DAMP_FIXED_CL= 0.2 % % Side-slip angle (degrees, only for compressible flows) SIDESLIP_ANGLE= 0.0 % % Init option to choose between Reynolds (default) or thermodynamics quantities % for initializing the solution (REYNOLDS, TD_CONDITIONS) INIT_OPTION= REYNOLDS % % Free-stream temperature (288.15 K by default) 540 Rankine AIAA 2015-1746 FREESTREAM_TEMPERATURE= 300. % % Reynolds number (non-dimensional, based on the free-stream values) REYNOLDS_NUMBER= 6.0E6 % % Reynolds length (1 m by default) REYNOLDS_LENGTH= 1.0 % % ---------------------- REFERENCE VALUE DEFINITION ---------------------------% % % Reference origin for moment computation REF_ORIGIN_MOMENT_X = 0.25 REF_ORIGIN_MOMENT_Y = 0.00 REF_ORIGIN_MOMENT_Z = 0.00 % % Reference length for pitching, rolling, and yawing non-dimensional moment REF_LENGTH_MOMENT= 1.0 % % Reference area for force coefficients (0 implies automatic calculation) REF_AREA= 1.0 % % Flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, % FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE % -------------------- BOUNDARY CONDITION DEFINITION --------------------------% % % Navier-Stokes wall boundary marker(s) (NONE = no marker) MARKER_HEATFLUX= ( QUAD_bdy5, 0.0 ) % % Farfield boundary marker(s) (NONE = no marker) MARKER_FAR= ( QUAD_bdy3, QUAD_bdy4, QUAD_bdy6) % % MARKER_SYM= ( QUAD_bdy1, QUAD_bdy2 ) % % % Marker(s) of the surface to be plotted or designed MARKER_PLOTTING= ( QUAD_bdy5 ) % % Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated MARKER_MONITORING= ( QUAD_bdy5 ) % % % ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% % % Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES % % Courant-Friedrichs-Lewy condition of the finest grid CFL_NUMBER= 10. % % Max Delta time MAX_DELTA_TIME= 1E10 % % Adaptive CFL number (NO, YES) CFL_ADAPT= NO % % Parameters of the adaptive CFL number (factor down, factor up, CFL min value, % CFL max value ) CFL_ADAPT_PARAM= ( 1.5, 1.5, 30.0, 200.0 ) % % Number of total iterations EXT_ITER= 2000000 % % ----------------------- SLOPE LIMITER DEFINITION ----------------------------% % % Reference element length for computing the slope and sharp edges limiters. REF_ELEM_LENGTH= 0.1 % % Coefficient for the limiter LIMITER_COEFF= 0.3 % % Freeze the value of the limiter after a number of iterations LIMITER_ITER= 20000 % % % ------------------------ LINEAR SOLVER DEFINITION ---------------------------% % % Linear solver or smoother for implicit formulations (BCGSTAB, MULTIGRID, FGMRES, SMOOTHER_JACOBI, % SMOOTHER_ILU0, SMOOTHER_LUSGS, % SMOOTHER_LINELET) LINEAR_SOLVER= FGMRES % % Preconditioner of the Krylov linear solver (ILU0, LU_SGS, LINELET, JACOBI) LINEAR_SOLVER_PREC= LU_SGS % % Minimum error of the linear solver for implicit formulations LINEAR_SOLVER_ERROR= 1E-10 % % Max number of iterations of the linear solver for the implicit formulation LINEAR_SOLVER_ITER= 5 % -------------------------- MULTIGRID PARAMETERS -----------------------------% % % Multi-Grid Levels (0 = no multi-grid) MGLEVEL= 0 % % Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE) MGCYCLE= W_CYCLE % % Multi-grid pre-smoothing level MG_PRE_SMOOTH= ( 1, 2, 2, 2 ) % % Multi-grid post-smoothing level MG_POST_SMOOTH= ( 0, 0, 0, 0 ) % % Jacobi implicit smoothing of the correction MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 ) % % Damping factor for the residual restriction MG_DAMP_RESTRICTION= 0.85 % % Damping factor for the correction prolongation MG_DAMP_PROLONGATION= 0.85 % -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% % % Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, % TURKEL_PREC, MSW) CONV_NUM_METHOD_FLOW= JST % % when Coeff = 0, there is no entropy fix, typical value = 0.001 ENTROPY_FIX_COEFF=0.00 % % Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER) SPATIAL_ORDER_FLOW= 1ST_ORDER % % Slope limiter (VENKATAKRISHNAN, MINMOD) SLOPE_LIMITER_FLOW= VENKATAKRISHNAN % % 1st, 2nd and 4th order artificial dissipation coefficients AD_COEFF_FLOW= ( 0.15, 0.5, 0.02 ) % % Viscous limiter (NO, YES) VISCOUS_LIMITER_FLOW= NO % % Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) TIME_DISCRE_FLOW= EULER_IMPLICIT % -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------% % % Convective numerical method (SCALAR_UPWIND) CONV_NUM_METHOD_TURB= SCALAR_UPWIND % % Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER) SPATIAL_ORDER_TURB= 2ND_ORDER % % Slope limiter (VENKATAKRISHNAN, MINMOD) SLOPE_LIMITER_TURB= VENKATAKRISHNAN % % Time discretization (EULER_IMPLICIT) TIME_DISCRE_TURB= EULER_IMPLICIT % % Reduction factor of the CFL coefficient in the turbulence problem CFL_REDUCTION_TURB= 1. % FREESTREAM_NU_FACTOR=3. % % % --------------------------- CONVERGENCE PARAMETERS --------------------------% % % Convergence criteria (CAUCHY, RESIDUAL) % CONV_CRITERIA= RESIDUAL % % Residual reduction (order of magnitude with respect to the initial value) RESIDUAL_REDUCTION= 10 % % Min value of the residual (log10 of the residual) RESIDUAL_MINVAL= -15 % % Start convergence criteria at iteration number STARTCONV_ITER= 10 % % Number of elements to apply the criteria CAUCHY_ELEMS= 100 % % Epsilon to control the series convergence CAUCHY_EPS= 1E-10 % % Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, SENS_GEOMETRY, % SENS_MACH, DELTA_LIFT, DELTA_DRAG) CAUCHY_FUNC_FLOW= DRAG % ------------------------- INPUT/OUTPUT INFORMATION --------------------------% % % Mesh input file MESH_FILENAME= mesh-897×257.su2 % % Mesh input file format (SU2, CGNS, NETCDF_ASCII) MESH_FORMAT= SU2 % % Mesh output file MESH_OUT_FILENAME= mesh_out.su2 % % Restart flow input file SOLUTION_FLOW_FILENAME= restart_flow_solution_sa.dat % % Restart adjoint input file SOLUTION_ADJ_FILENAME= solution_adj.dat % % Output file format (PARAVIEW, TECPLOT, STL) OUTPUT_FORMAT= TECPLOT % % Output file convergence history (w/o extension) CONV_FILENAME= history % % Output file restart flow RESTART_FLOW_FILENAME= restart_flow.dat % % Output file restart adjoint RESTART_ADJ_FILENAME= restart_adj.dat % % Output file flow (w/o extension) variables VOLUME_FLOW_FILENAME= flow % % Output file adjoint (w/o extension) variables VOLUME_ADJ_FILENAME= adjoint % % Output objective function gradient (using continuous adjoint) GRAD_OBJFUNC_FILENAME= of_grad.dat % % Output file surface flow coefficient (w/o extension) SURFACE_FLOW_FILENAME= surface_flow % % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % % Writing solution file frequency WRT_SOL_FREQ= 1000 % % Writing convergence history frequency WRT_CON_FREQ= 1 |
|
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
[DesignModeler] DesignModeler Scripting: How to get Full Command Access | ANT | ANSYS Meshing & Geometry | 53 | February 16, 2020 16:13 |
damBreak case parallel run problem | behzad-cfd | OpenFOAM Running, Solving & CFD | 5 | August 2, 2015 18:18 |
Use XiFoam to run a laminar spherical flame case. | fcrl-zxr | OpenFOAM Running, Solving & CFD | 0 | June 8, 2015 12:11 |
Problem to run flow around a cylinder - LES case | valerio galluzzi | OpenFOAM Pre-Processing | 0 | August 26, 2014 08:47 |
problem when I run the case | Rui | Siemens | 1 | February 1, 2007 07:25 |