|
[Sponsors] |
Unsteady simulation solution files in parallel |
|
LinkBack | Thread Tools | Search this Thread | Display Modes |
December 13, 2015, 12:20 |
Unsteady simulation solution files in parallel
|
#1 |
New Member
Mike
Join Date: Oct 2015
Posts: 11
Rep Power: 11 |
I've tried to run the unsteady square cylinder test case provided with the code but it only writes 1 solution file right at the end. Does anyone know how do you get the solver to write a solution file every iteration whilst running the code in parallel?
The cfg code is below, thanks in advance. Code:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % SU2 configuration file % % Case description: Turbulent flow around a square cylinder % % Author: Thomas D. Economon % % Institution: Stanford University % % Date: 2013.02.25 % % File Version 4.0.0 "Cardinal" % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% % % Physical governing equations (EULER, NAVIER_STOKES, % TNE2_EULER, TNE2_NAVIER_STOKES, % WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, % POISSON_EQUATION) PHYSICAL_PROBLEM= NAVIER_STOKES % % If Navier-Stokes, kind of turbulent model (NONE, SA) KIND_TURB_MODEL= SST % % Mathematical problem (DIRECT, ADJOINT, LINEARIZED, ONE_SHOT_ADJOINT) MATH_PROBLEM= DIRECT % % Restart solution (NO, YES) RESTART_SOL= YES % % Unsteady restart iteration (need previous restart files) UNST_RESTART_ITER= 2 % ------------------------- UNSTEADY SIMULATION -------------------------------% % % Unsteady simulation (NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER, % DUAL_TIME_STEPPING-2ND_ORDER, TIME_SPECTRAL) UNSTEADY_SIMULATION= DUAL_TIME_STEPPING-2ND_ORDER % % Time Step for dual time stepping simulations (s) UNST_TIMESTEP= 0.0015 % % Total Physical Time for dual time stepping simulations (s) UNST_TIME= 3.75 % 2500 iterations - 3.75 % 3500 iterations - 5.25 % 5000 iterations - 7.50 % % Number of internal iterations (dual time method) UNST_INT_ITER= 10 % ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% % % Mach number (non-dimensional, based on the free-stream values) MACH_NUMBER= 0.1 % % Angle of attack (degrees) AoA= 0.0 % % Side-slip angle (degrees) SIDESLIP_ANGLE= 0.0 % % Free-stream temperature (288.15 K by default) FREESTREAM_TEMPERATURE= 288.15 % % Reynolds number (non-dimensional, based on the free-stream values) REYNOLDS_NUMBER= 22000.0 % % Reynolds length (in meters) REYNOLDS_LENGTH= 1.0 % ---------------------- REFERENCE VALUE DEFINITION ---------------------------% % % Reference origin for moment computation REF_ORIGIN_MOMENT_X = 0.00 REF_ORIGIN_MOMENT_Y = 0.00 REF_ORIGIN_MOMENT_Z = 0.00 % % Reference length for pitching, rolling, and yawing non-dimensional moment REF_LENGTH_MOMENT= 1.0 % % Reference area for force coefficients (0 implies automatic calculation) REF_AREA= 1.0 % -------------------- BOUNDARY CONDITION DEFINITION --------------------------% % % Navier-Stokes wall boundary marker(s) (NONE = no marker) MARKER_HEATFLUX= ( square, 0.0 ) % % Farfield boundary marker(s) (NONE = no marker) MARKER_FAR= ( inlet, outlet, upper, lower ) % % Marker(s) of the surface to be plotted or designed MARKER_PLOTTING= ( square ) % % Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated MARKER_MONITORING= ( square ) % ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% % % Numerical method for spatial gradients (GREEN_GAUSS, LEAST_SQUARES, % WEIGHTED_LEAST_SQUARES) NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES % % Courant-Friedrichs-Lewy condition of the finest grid CFL_NUMBER= 2.0 % % Adaptive CFL number (NO, YES) CFL_ADAPT= NO % % Parameters of the adaptive CFL number (factor down, factor up, CFL min value, % CFL max value ) CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 100.0 ) % % Runge-Kutta alpha coefficients RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 ) % % Number of total iterations EXT_ITER= 3 % % ------------------------ LINEAR SOLVER DEFINITION ---------------------------% % % Linear solver for the implicit (or discrete adjoint) formulation (BCGSTAB, FGMRES) LINEAR_SOLVER= FGMRES % % Preconditioner of the Krylov linear solver (JACOBI, LINELET, LU_SGS) LINEAR_SOLVER_PREC= LU_SGS % % Min error of the linear solver for the implicit formulation LINEAR_SOLVER_ERROR= 1E-6 % % Max number of iterations of the linear solver for the implicit formulation LINEAR_SOLVER_ITER= 2 % -------------------------- MULTIGRID PARAMETERS -----------------------------% % % Multi-Grid Levels (0 = no multi-grid) MGLEVEL= 0 % % Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE) MGCYCLE= V_CYCLE % % Multi-grid pre-smoothing level MG_PRE_SMOOTH= ( 1, 2, 3, 3 ) % % Multi-grid post-smoothing level MG_POST_SMOOTH= ( 0, 0, 0, 0 ) % % Jacobi implicit smoothing of the correction MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 ) % % Damping factor for the residual restriction MG_DAMP_RESTRICTION= 0.7 % % Damping factor for the correction prolongation MG_DAMP_PROLONGATION= 0.7 % -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% % % Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, % TURKEL_PREC, MSW) CONV_NUM_METHOD_FLOW= ROE % % Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER) SPATIAL_ORDER_FLOW= 2ND_ORDER_LIMITER % % Coefficient for the limiter LIMITER_COEFF= 10.0 % % 1st, 2nd and 4th order artificial dissipation coefficients AD_COEFF_FLOW= ( 0.15, 0.5, 0.02 ) % % Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) TIME_DISCRE_FLOW= EULER_IMPLICIT % -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------% % % Convective numerical method (SCALAR_UPWIND) CONV_NUM_METHOD_TURB= SCALAR_UPWIND % % Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER) SPATIAL_ORDER_TURB= 1ST_ORDER % % Slope limiter (NONE, VENKATAKRISHNAN, BARTH) SLOPE_LIMITER_TURB= VENKATAKRISHNAN % % Time discretization (EULER_IMPLICIT) TIME_DISCRE_TURB= EULER_IMPLICIT % --------------------------- CONVERGENCE PARAMETERS --------------------------% % % Convergence criteria (CAUCHY, RESIDUAL) % CONV_CRITERIA= RESIDUAL % % Residual reduction (order of magnitude with respect to the initial value) RESIDUAL_REDUCTION= 3 % % Min value of the residual (log10 of the residual) RESIDUAL_MINVAL= -10 % % Start convergence criteria at iteration number STARTCONV_ITER= 10 % % Number of elements to apply the criteria CAUCHY_ELEMS= 100 % % Epsilon to control the series convergence CAUCHY_EPS= 1E-5 % % Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, SENS_GEOMETRY, % SENS_MACH, DELTA_LIFT, DELTA_DRAG) CAUCHY_FUNC_FLOW= DRAG CAUCHY_FUNC_LIN= DELTA_DRAG % ------------------------- INPUT/OUTPUT INFORMATION --------------------------% % % Mesh input file MESH_FILENAME= mesh_square_turb_hybrid.su2 % % Mesh input file format (SU2, CGNS NETCDF_ASCII) MESH_FORMAT= SU2 % % Mesh output file MESH_OUT_FILENAME= mesh_out.su2 % % Restart flow input file SOLUTION_FLOW_FILENAME= solution_flow.dat % % Restart linear flow input file SOLUTION_LIN_FILENAME= solution_lin.dat % % Restart adjoint input file SOLUTION_ADJ_FILENAME= solution_adj.dat % % Output file format (PARAVIEW, TECPLOT) OUTPUT_FORMAT= TECPLOT % % Output file convergence history (w/o extension) CONV_FILENAME= history % % Output file restart flow RESTART_FLOW_FILENAME= restart_flow.dat % % Output file restart adjoint RESTART_ADJ_FILENAME= restart_adj.dat % % Output file linear flow RESTART_LIN_FILENAME= restart_lin.dat % % Output file flow (w/o extension) variables VOLUME_FLOW_FILENAME= flow % % Output file adjoint (w/o extension) variables VOLUME_ADJ_FILENAME= adjoint % % Output file linearized (w/o extension) variables VOLUME_LIN_FILENAME= linearized % % Output Objective function gradient (using continuous adjoint) GRAD_OBJFUNC_FILENAME= of_grad.dat % % Output file surface flow coefficient (w/o extension) SURFACE_FLOW_FILENAME= surface_flow % % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % % Output file surface linear coefficient (w/o extension) SURFACE_LIN_FILENAME= surface_linear % % Writing solution file frequency WRT_SOL_FREQ= 1 % % Writing solution file frequency for physical time steps (dual time) WRT_SOL_FREQ_DUALTIME= 1 % % Writing convergence history frequency WRT_CON_FREQ= 1 % % Writing convergence history frequency (dual time, only written to screen) WRT_CON_FREQ_DUALTIME= 1 |
|
December 15, 2015, 14:28 |
|
#2 | |
Senior Member
Heather Kline
Join Date: Jun 2013
Posts: 309
Rep Power: 14 |
Quote:
I believe that increasing EXT_ITER above 3 will help. Currently, it uses two previous steps to restart the solution and runs one additional dual time step (which has several internal iterations that are printed to the screen). |
||
Tags |
parallel, square cylinder, su2, unsteady |
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
UDF issue | MASOUD | Fluent UDF and Scheme Programming | 14 | December 6, 2012 14:39 |
critical error during installation of openfoam | Fabio88 | OpenFOAM Installation | 21 | June 2, 2010 04:01 |
IcoFoam parallel woes | msrinath80 | OpenFOAM Running, Solving & CFD | 9 | July 22, 2007 03:58 |
Unsteady simulation of flow past wheel | Tom | FLUENT | 8 | January 18, 2006 11:54 |
Could anybody help me see this error and give help | liugx212 | OpenFOAM Running, Solving & CFD | 3 | January 4, 2006 19:07 |