CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Software User Forums > SU2

Rotating blades linearly installed

Register Blogs Community New Posts Updated Threads Search

Like Tree2Likes

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   May 4, 2016, 05:06
Default vki 3D Mesh error
  #21
New Member
 
Dario
Join Date: Mar 2016
Posts: 8
Rep Power: 10
ddar is on a distinguished road
Hello!

I am working with 3D periodic Mesh of the same vki turbine.

I have this problem with the simulation:

---------------------- Local Time Stepping Summary ----------------------
MG level: 0 -> Min. DT: 1.54419e-10. Max. DT: 1.64438e-07. CFL: 1.
-------------------------------------------------------------------------

----------------------- Residual Evolution Summary ----------------------
log10[Maximum residual]: 45.4432.
Maximum residual point 46112, located at (-0.0184353, -0.0344776, 0.0196364).
There are 673 non-physical points in the solution.
-------------------------------------------------------------------------

Iter Time(s) Res[Rho] Res[RhoE] CLift(Total) CDrag(Total)
240 1.502260 42.917062 51.095536 -10000.000000 -10000.000000
241 1.501982 43.111468 51.269638 -10000.000000 -10000.000000
242 1.502388 43.346441 51.531235 -10000.000000 -10000.000000
243 1.502108 43.576183 51.765558 -10000.000000 -10000.000000
244 1.501836 43.756342 51.953424 -10000.000000 -10000.000000
245 1.501575 43.914932 52.108849 -10000.000000 -10000.000000
246 1.501313 44.128477 52.345214 -10000.000000 -10000.000000
247 1.501046 44.299564 52.507904 -10000.000000 -10000.000000
248 1.500784 44.485835 52.704873 -10000.000000 -10000.000000
249 1.500513 44.709052 52.932963 -10000.000000 -10000.000000
250 1.500254 44.891220 53.135733 -10000.000000 -10000.000000

-------------------------- File Output Summary --------------------------
Writing comma-separated values (CSV) surface files.
Merging connectivities in the Master node.
Merging coordinates in the Master node.
*** Error in `SU2_CFD': free(): corrupted unsorted chunks: 0x000000002119f3c0 ***
*** Error in `SU2_CFD': malloc(): memory corruption: 0x0000000021492020 ***


Is there anyone who can help me?

Thank you very much!

This is the cfg:
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations (EULER, NAVIER_STOKES, NS_PLASMA)
%
PHYSICAL_PROBLEM= EULER
%
% Mathematical problem (DIRECT, ADJOINT, LINEARIZED)
MATH_PROBLEM= DIRECT
%
% Restart solution (NO, YES)
RESTART_SOL= NO

% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------%
%
% Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 0.01
%
% Angle of attack (degrees, only for compressible flows)
AoA= 0.0
%
% Side-slip angle (degrees, only for compressible flows)
SIDESLIP_ANGLE= 0.0
%
% Free-stream pressure (101325.0 N/m^2 by default)
FREESTREAM_PRESSURE= 150000.0
%
% Free-stream temperature (288.15 K by default)
FREESTREAM_TEMPERATURE= 288.0

% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation
REF_ORIGIN_MOMENT_X = 0.25
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 0.00
%
% Reference length for pitching, rolling, and yawing non-dimensional moment
REF_LENGTH_MOMENT= 1.0
%
% Reference area for force coefficients (0 implies automatic calculation)
REF_AREA= 1.0
%
% Reference element length for computing the slope limiter epsilon
REF_ELEM_LENGTH= 0.1

% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
% Euler wall boundary marker(s) (NONE = no marker)
MARKER_EULER= ( pala,wall1,wall2)

%
% Inlet boundary marker(s) (NONE = no marker)
% Format: ( inlet marker, total temperature, total pressure, flow_direction_x,
% flow_direction_y, flow_direction_z, ... ) where flow_direction is
% a unit vector.
% Default: Mach ~ 0.1
MARKER_INLET= ( ingresso, 348.0, 153960.0, 0.8667, 0.5, 0.0 )
% Comment above line and uncomment next for Mach ~ 0.7 (transonic)
%MARKER_INLET= ( inlet, 316.224, 140513.23, 1.0, 0.0, 0.0 )
%
% Outlet boundary marker(s) (NONE = no marker)
% Format: ( outlet marker, back pressure (static), ... )
MARKER_OUTLET= ( uscita, 100000.0 )
%
MARKER_PERIODIC= ( per2, per1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03408, 0.0 )
KIND_ADAPT= PERIODIC
% MARKER_SYM= (sym,wall)

% ------------------------ SURFACES IDENTIFICATION ----------------------------%
%
% Marker(s) of the surface to be plotted or designed
MARKER_PLOTTING= ( pala )
%
% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated
MARKER_MONITORING= ( pala )

% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= GREEN_GAUSS
%
% Courant-Friedrichs-Lewy condition of the finest grid
CFL_NUMBER= 1.0
%
% Adaptive CFL number (NO, YES)
CFL_ADAPT= NO
%
% Parameters of the adaptive CFL number (factor down, factor up, CFL min value,
% CFL max value )
CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 100.0 )
%
% Runge-Kutta alpha coefficients
RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 )
%
% Number of total iterations
EXT_ITER= 5000

% ------------------------ LINEAR SOLVER DEFINITION ---------------------------%
%
% Linear solver for implicit formulations (BCGSTAB, FGMRES)
LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (JACOBI, LINELET, LU_SGS)
LINEAR_SOLVER_PREC= LU_SGS
%
% Minimum error of the linear solver for implicit formulations
LINEAR_SOLVER_ERROR= 1E-4
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 100

% -------------------------- MULTIGRID PARAMETERS -----------------------------%
%
% Multi-Grid Levels (0 = no multi-grid)
MGLEVEL= 0
%
% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE)
MGCYCLE= V_CYCLE
%
% Multi-grid pre-smoothing level
MG_PRE_SMOOTH= ( 1, 2, 3, 3 )
%
% Multi-grid post-smoothing level
MG_POST_SMOOTH= ( 0, 0, 0, 0 )
%
% Jacobi implicit smoothing of the correction
MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 )
%
% Damping factor for the residual restriction
MG_DAMP_RESTRICTION= 0.9
%
% Damping factor for the correction prolongation
MG_DAMP_PROLONGATION= 0.9

% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
% TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= JST
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
%
SPATIAL_ORDER_FLOW= 2ND_ORDER_LIMITER
%
% Slope limiter (VENKATAKRISHNAN, MINMOD)
SLOPE_LIMITER_FLOW= VENKATAKRISHNAN
%
% Coefficient for the limiter (smooth regions)
LIMITER_COEFF= 0.3
%
% 1st, 2nd and 4th order artificial dissipation coefficients
AD_COEFF_FLOW= ( 0.15, 0.5, 0.02 )
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT

% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Convergence criteria (CAUCHY, RESIDUAL)
%
CONV_CRITERIA= RESIDUAL
%
% Residual reduction (order of magnitude with respect to the initial value)
RESIDUAL_REDUCTION= 6
%
% Min value of the residual (log10 of the residual)
RESIDUAL_MINVAL= -12
%
% Start convergence criteria at iteration number
STARTCONV_ITER= 10
%
% Number of elements to apply the criteria
CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CAUCHY_EPS= 1E-10
%
% Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, SENS_GEOMETRY,
% SENS_MACH, DELTA_LIFT, DELTA_DRAG)
CAUCHY_FUNC_FLOW= DRAG

% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
% Mesh input file
%MESH_FILENAME= mesh_out.su2
MESH_FILENAME= meshper.su2
%
% Mesh input file format (SU2, CGNS, NETCDF_ASCII)
MESH_FORMAT= SU2
%
% Mesh output file
MESH_OUT_FILENAME= meshper.su2
%
% Restart flow input file
SOLUTION_FLOW_FILENAME= solution_flow.dat
%
% Restart linear flow input file
SOLUTION_LIN_FILENAME= solution_lin.dat
%
% Restart adjoint input file
SOLUTION_ADJ_FILENAME= solution_adj.dat
%
% Output file format (PARAVIEW, TECPLOT, STL)
OUTPUT_FORMAT= TECPLOT
%
% Output file convergence history (w/o extension)
CONV_FILENAME= history
%
% Output file restart flow
RESTART_FLOW_FILENAME= solution_flow.dat
%
% Output file restart adjoint
RESTART_ADJ_FILENAME= restart_adj.dat
%
% Output file linear flow
RESTART_LIN_FILENAME= restart_lin.dat
%
% Output file flow (w/o extension) variables
VOLUME_FLOW_FILENAME= flow
%
% Output file adjoint (w/o extension) variables
VOLUME_ADJ_FILENAME= adjoint
%
% Output file linearized (w/o extension) variables
VOLUME_LIN_FILENAME= linearized
%
% Output objective function gradient (using continuous adjoint)
GRAD_OBJFUNC_FILENAME= of_grad.dat
%
% Output file surface flow coefficient (w/o extension)
SURFACE_FLOW_FILENAME= surface_flow
%
% Output file surface adjoint coefficient (w/o extension)
SURFACE_ADJ_FILENAME= surface_adjoint
%
% Output file surface linear coefficient (w/o extension)
SURFACE_LIN_FILENAME= surface_linear
%
% Writing solution file frequency
WRT_SOL_FREQ= 250
%
% Writing convergence history frequency
WRT_CON_FREQ= 1

In attacments there is my periodic mesh!

Thank you very much,

Best regards
ddar is offline   Reply With Quote

Old   May 4, 2016, 05:08
Default
  #22
New Member
 
Dario
Join Date: Mar 2016
Posts: 8
Rep Power: 10
ddar is on a distinguished road
Hi salvovitale!


I am working with 3D periodic Mesh of the same vki turbine.

I have this problem with the simulation:

---------------------- Local Time Stepping Summary ----------------------
MG level: 0 -> Min. DT: 1.54419e-10. Max. DT: 1.64438e-07. CFL: 1.
-------------------------------------------------------------------------

----------------------- Residual Evolution Summary ----------------------
log10[Maximum residual]: 45.4432.
Maximum residual point 46112, located at (-0.0184353, -0.0344776, 0.0196364).
There are 673 non-physical points in the solution.
-------------------------------------------------------------------------

Iter Time(s) Res[Rho] Res[RhoE] CLift(Total) CDrag(Total)
240 1.502260 42.917062 51.095536 -10000.000000 -10000.000000
241 1.501982 43.111468 51.269638 -10000.000000 -10000.000000
242 1.502388 43.346441 51.531235 -10000.000000 -10000.000000
243 1.502108 43.576183 51.765558 -10000.000000 -10000.000000
244 1.501836 43.756342 51.953424 -10000.000000 -10000.000000
245 1.501575 43.914932 52.108849 -10000.000000 -10000.000000
246 1.501313 44.128477 52.345214 -10000.000000 -10000.000000
247 1.501046 44.299564 52.507904 -10000.000000 -10000.000000
248 1.500784 44.485835 52.704873 -10000.000000 -10000.000000
249 1.500513 44.709052 52.932963 -10000.000000 -10000.000000
250 1.500254 44.891220 53.135733 -10000.000000 -10000.000000

-------------------------- File Output Summary --------------------------
Writing comma-separated values (CSV) surface files.
Merging connectivities in the Master node.
Merging coordinates in the Master node.
*** Error in `SU2_CFD': free(): corrupted unsorted chunks: 0x000000002119f3c0 ***
*** Error in `SU2_CFD': malloc(): memory corruption: 0x0000000021492020 ***


Is there anyone who can help me?

Thank you very much!

This is the cfg:
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations (EULER, NAVIER_STOKES, NS_PLASMA)
%
PHYSICAL_PROBLEM= EULER
%
% Mathematical problem (DIRECT, ADJOINT, LINEARIZED)
MATH_PROBLEM= DIRECT
%
% Restart solution (NO, YES)
RESTART_SOL= NO

% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------%
%
% Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 0.01
%
% Angle of attack (degrees, only for compressible flows)
AoA= 0.0
%
% Side-slip angle (degrees, only for compressible flows)
SIDESLIP_ANGLE= 0.0
%
% Free-stream pressure (101325.0 N/m^2 by default)
FREESTREAM_PRESSURE= 150000.0
%
% Free-stream temperature (288.15 K by default)
FREESTREAM_TEMPERATURE= 288.0

% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation
REF_ORIGIN_MOMENT_X = 0.25
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 0.00
%
% Reference length for pitching, rolling, and yawing non-dimensional moment
REF_LENGTH_MOMENT= 1.0
%
% Reference area for force coefficients (0 implies automatic calculation)
REF_AREA= 1.0
%
% Reference element length for computing the slope limiter epsilon
REF_ELEM_LENGTH= 0.1

% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
% Euler wall boundary marker(s) (NONE = no marker)
MARKER_EULER= ( pala,wall1,wall2)

%
% Inlet boundary marker(s) (NONE = no marker)
% Format: ( inlet marker, total temperature, total pressure, flow_direction_x,
% flow_direction_y, flow_direction_z, ... ) where flow_direction is
% a unit vector.
% Default: Mach ~ 0.1
MARKER_INLET= ( ingresso, 348.0, 153960.0, 0.8667, 0.5, 0.0 )
% Comment above line and uncomment next for Mach ~ 0.7 (transonic)
%MARKER_INLET= ( inlet, 316.224, 140513.23, 1.0, 0.0, 0.0 )
%
% Outlet boundary marker(s) (NONE = no marker)
% Format: ( outlet marker, back pressure (static), ... )
MARKER_OUTLET= ( uscita, 100000.0 )
%
MARKER_PERIODIC= ( per2, per1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03408, 0.0 )
KIND_ADAPT= PERIODIC
% MARKER_SYM= (sym,wall)

% ------------------------ SURFACES IDENTIFICATION ----------------------------%
%
% Marker(s) of the surface to be plotted or designed
MARKER_PLOTTING= ( pala )
%
% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated
MARKER_MONITORING= ( pala )

% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= GREEN_GAUSS
%
% Courant-Friedrichs-Lewy condition of the finest grid
CFL_NUMBER= 1.0
%
% Adaptive CFL number (NO, YES)
CFL_ADAPT= NO
%
% Parameters of the adaptive CFL number (factor down, factor up, CFL min value,
% CFL max value )
CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 100.0 )
%
% Runge-Kutta alpha coefficients
RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 )
%
% Number of total iterations
EXT_ITER= 5000

% ------------------------ LINEAR SOLVER DEFINITION ---------------------------%
%
% Linear solver for implicit formulations (BCGSTAB, FGMRES)
LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (JACOBI, LINELET, LU_SGS)
LINEAR_SOLVER_PREC= LU_SGS
%
% Minimum error of the linear solver for implicit formulations
LINEAR_SOLVER_ERROR= 1E-4
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 100

% -------------------------- MULTIGRID PARAMETERS -----------------------------%
%
% Multi-Grid Levels (0 = no multi-grid)
MGLEVEL= 0
%
% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE)
MGCYCLE= V_CYCLE
%
% Multi-grid pre-smoothing level
MG_PRE_SMOOTH= ( 1, 2, 3, 3 )
%
% Multi-grid post-smoothing level
MG_POST_SMOOTH= ( 0, 0, 0, 0 )
%
% Jacobi implicit smoothing of the correction
MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 )
%
% Damping factor for the residual restriction
MG_DAMP_RESTRICTION= 0.9
%
% Damping factor for the correction prolongation
MG_DAMP_PROLONGATION= 0.9

% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
% TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= JST
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
%
SPATIAL_ORDER_FLOW= 2ND_ORDER_LIMITER
%
% Slope limiter (VENKATAKRISHNAN, MINMOD)
SLOPE_LIMITER_FLOW= VENKATAKRISHNAN
%
% Coefficient for the limiter (smooth regions)
LIMITER_COEFF= 0.3
%
% 1st, 2nd and 4th order artificial dissipation coefficients
AD_COEFF_FLOW= ( 0.15, 0.5, 0.02 )
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT

% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Convergence criteria (CAUCHY, RESIDUAL)
%
CONV_CRITERIA= RESIDUAL
%
% Residual reduction (order of magnitude with respect to the initial value)
RESIDUAL_REDUCTION= 6
%
% Min value of the residual (log10 of the residual)
RESIDUAL_MINVAL= -12
%
% Start convergence criteria at iteration number
STARTCONV_ITER= 10
%
% Number of elements to apply the criteria
CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CAUCHY_EPS= 1E-10
%
% Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, SENS_GEOMETRY,
% SENS_MACH, DELTA_LIFT, DELTA_DRAG)
CAUCHY_FUNC_FLOW= DRAG

% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
% Mesh input file
%MESH_FILENAME= mesh_out.su2
MESH_FILENAME= meshper.su2
%
% Mesh input file format (SU2, CGNS, NETCDF_ASCII)
MESH_FORMAT= SU2
%
% Mesh output file
MESH_OUT_FILENAME= meshper.su2
%
% Restart flow input file
SOLUTION_FLOW_FILENAME= solution_flow.dat
%
% Restart linear flow input file
SOLUTION_LIN_FILENAME= solution_lin.dat
%
% Restart adjoint input file
SOLUTION_ADJ_FILENAME= solution_adj.dat
%
% Output file format (PARAVIEW, TECPLOT, STL)
OUTPUT_FORMAT= TECPLOT
%
% Output file convergence history (w/o extension)
CONV_FILENAME= history
%
% Output file restart flow
RESTART_FLOW_FILENAME= solution_flow.dat
%
% Output file restart adjoint
RESTART_ADJ_FILENAME= restart_adj.dat
%
% Output file linear flow
RESTART_LIN_FILENAME= restart_lin.dat
%
% Output file flow (w/o extension) variables
VOLUME_FLOW_FILENAME= flow
%
% Output file adjoint (w/o extension) variables
VOLUME_ADJ_FILENAME= adjoint
%
% Output file linearized (w/o extension) variables
VOLUME_LIN_FILENAME= linearized
%
% Output objective function gradient (using continuous adjoint)
GRAD_OBJFUNC_FILENAME= of_grad.dat
%
% Output file surface flow coefficient (w/o extension)
SURFACE_FLOW_FILENAME= surface_flow
%
% Output file surface adjoint coefficient (w/o extension)
SURFACE_ADJ_FILENAME= surface_adjoint
%
% Output file surface linear coefficient (w/o extension)
SURFACE_LIN_FILENAME= surface_linear
%
% Writing solution file frequency
WRT_SOL_FREQ= 250
%
% Writing convergence history frequency
WRT_CON_FREQ= 1

Do you need my mesh?

Thank you very much,

Best regards
ddar is offline   Reply With Quote

Old   May 4, 2016, 05:18
Default
  #23
New Member
 
Dario
Join Date: Mar 2016
Posts: 8
Rep Power: 10
ddar is on a distinguished road
Hello salvovitale!

I am working with 3D periodic Mesh of the same vki turbine.

I have this problem with the simulation:

---------------------- Local Time Stepping Summary ----------------------
MG level: 0 -> Min. DT: 1.54419e-10. Max. DT: 1.64438e-07. CFL: 1.
-------------------------------------------------------------------------

----------------------- Residual Evolution Summary ----------------------
log10[Maximum residual]: 45.4432.
Maximum residual point 46112, located at (-0.0184353, -0.0344776, 0.0196364).
There are 673 non-physical points in the solution.
-------------------------------------------------------------------------

Iter Time(s) Res[Rho] Res[RhoE] CLift(Total) CDrag(Total)
240 1.502260 42.917062 51.095536 -10000.000000 -10000.000000
241 1.501982 43.111468 51.269638 -10000.000000 -10000.000000
242 1.502388 43.346441 51.531235 -10000.000000 -10000.000000
243 1.502108 43.576183 51.765558 -10000.000000 -10000.000000
244 1.501836 43.756342 51.953424 -10000.000000 -10000.000000
245 1.501575 43.914932 52.108849 -10000.000000 -10000.000000
246 1.501313 44.128477 52.345214 -10000.000000 -10000.000000
247 1.501046 44.299564 52.507904 -10000.000000 -10000.000000
248 1.500784 44.485835 52.704873 -10000.000000 -10000.000000
249 1.500513 44.709052 52.932963 -10000.000000 -10000.000000
250 1.500254 44.891220 53.135733 -10000.000000 -10000.000000

-------------------------- File Output Summary --------------------------
Writing comma-separated values (CSV) surface files.
Merging connectivities in the Master node.
Merging coordinates in the Master node.
*** Error in `SU2_CFD': free(): corrupted unsorted chunks: 0x000000002119f3c0 ***
*** Error in `SU2_CFD': malloc(): memory corruption: 0x0000000021492020 ***


Is there anyone who can help me?

Thank you very much!

This is the cfg:
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations (EULER, NAVIER_STOKES, NS_PLASMA)
%
PHYSICAL_PROBLEM= EULER
%
% Mathematical problem (DIRECT, ADJOINT, LINEARIZED)
MATH_PROBLEM= DIRECT
%
% Restart solution (NO, YES)
RESTART_SOL= NO

% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------%
%
% Mach number (non-dimensional, based on the free-stream values)
MACH_NUMBER= 0.01
%
% Angle of attack (degrees, only for compressible flows)
AoA= 0.0
%
% Side-slip angle (degrees, only for compressible flows)
SIDESLIP_ANGLE= 0.0
%
% Free-stream pressure (101325.0 N/m^2 by default)
FREESTREAM_PRESSURE= 150000.0
%
% Free-stream temperature (288.15 K by default)
FREESTREAM_TEMPERATURE= 288.0

% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation
REF_ORIGIN_MOMENT_X = 0.25
REF_ORIGIN_MOMENT_Y = 0.00
REF_ORIGIN_MOMENT_Z = 0.00
%
% Reference length for pitching, rolling, and yawing non-dimensional moment
REF_LENGTH_MOMENT= 1.0
%
% Reference area for force coefficients (0 implies automatic calculation)
REF_AREA= 1.0
%
% Reference element length for computing the slope limiter epsilon
REF_ELEM_LENGTH= 0.1

% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
% Euler wall boundary marker(s) (NONE = no marker)
MARKER_EULER= ( pala,wall1,wall2)

%
% Inlet boundary marker(s) (NONE = no marker)
% Format: ( inlet marker, total temperature, total pressure, flow_direction_x,
% flow_direction_y, flow_direction_z, ... ) where flow_direction is
% a unit vector.
% Default: Mach ~ 0.1
MARKER_INLET= ( ingresso, 348.0, 153960.0, 0.8667, 0.5, 0.0 )
% Comment above line and uncomment next for Mach ~ 0.7 (transonic)
%MARKER_INLET= ( inlet, 316.224, 140513.23, 1.0, 0.0, 0.0 )
%
% Outlet boundary marker(s) (NONE = no marker)
% Format: ( outlet marker, back pressure (static), ... )
MARKER_OUTLET= ( uscita, 100000.0 )
%
MARKER_PERIODIC= ( per2, per1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03408, 0.0 )
KIND_ADAPT= PERIODIC
% MARKER_SYM= (sym,wall)

% ------------------------ SURFACES IDENTIFICATION ----------------------------%
%
% Marker(s) of the surface to be plotted or designed
MARKER_PLOTTING= ( pala )
%
% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated
MARKER_MONITORING= ( pala )

% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= GREEN_GAUSS
%
% Courant-Friedrichs-Lewy condition of the finest grid
CFL_NUMBER= 1.0
%
% Adaptive CFL number (NO, YES)
CFL_ADAPT= NO
%
% Parameters of the adaptive CFL number (factor down, factor up, CFL min value,
% CFL max value )
CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 100.0 )
%
% Runge-Kutta alpha coefficients
RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 )
%
% Number of total iterations
EXT_ITER= 5000

% ------------------------ LINEAR SOLVER DEFINITION ---------------------------%
%
% Linear solver for implicit formulations (BCGSTAB, FGMRES)
LINEAR_SOLVER= FGMRES
%
% Preconditioner of the Krylov linear solver (JACOBI, LINELET, LU_SGS)
LINEAR_SOLVER_PREC= LU_SGS
%
% Minimum error of the linear solver for implicit formulations
LINEAR_SOLVER_ERROR= 1E-4
%
% Max number of iterations of the linear solver for the implicit formulation
LINEAR_SOLVER_ITER= 100

% -------------------------- MULTIGRID PARAMETERS -----------------------------%
%
% Multi-Grid Levels (0 = no multi-grid)
MGLEVEL= 0
%
% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE)
MGCYCLE= V_CYCLE
%
% Multi-grid pre-smoothing level
MG_PRE_SMOOTH= ( 1, 2, 3, 3 )
%
% Multi-grid post-smoothing level
MG_POST_SMOOTH= ( 0, 0, 0, 0 )
%
% Jacobi implicit smoothing of the correction
MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 )
%
% Damping factor for the residual restriction
MG_DAMP_RESTRICTION= 0.9
%
% Damping factor for the correction prolongation
MG_DAMP_PROLONGATION= 0.9

% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
% TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= JST
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
%
SPATIAL_ORDER_FLOW= 2ND_ORDER_LIMITER
%
% Slope limiter (VENKATAKRISHNAN, MINMOD)
SLOPE_LIMITER_FLOW= VENKATAKRISHNAN
%
% Coefficient for the limiter (smooth regions)
LIMITER_COEFF= 0.3
%
% 1st, 2nd and 4th order artificial dissipation coefficients
AD_COEFF_FLOW= ( 0.15, 0.5, 0.02 )
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT

% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Convergence criteria (CAUCHY, RESIDUAL)
%
CONV_CRITERIA= RESIDUAL
%
% Residual reduction (order of magnitude with respect to the initial value)
RESIDUAL_REDUCTION= 6
%
% Min value of the residual (log10 of the residual)
RESIDUAL_MINVAL= -12
%
% Start convergence criteria at iteration number
STARTCONV_ITER= 10
%
% Number of elements to apply the criteria
CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CAUCHY_EPS= 1E-10
%
% Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, SENS_GEOMETRY,
% SENS_MACH, DELTA_LIFT, DELTA_DRAG)
CAUCHY_FUNC_FLOW= DRAG

% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
% Mesh input file
%MESH_FILENAME= mesh_out.su2
MESH_FILENAME= meshper.su2
%
% Mesh input file format (SU2, CGNS, NETCDF_ASCII)
MESH_FORMAT= SU2
%
% Mesh output file
MESH_OUT_FILENAME= meshper.su2
%
% Restart flow input file
SOLUTION_FLOW_FILENAME= solution_flow.dat
%
% Restart linear flow input file
SOLUTION_LIN_FILENAME= solution_lin.dat
%
% Restart adjoint input file
SOLUTION_ADJ_FILENAME= solution_adj.dat
%
% Output file format (PARAVIEW, TECPLOT, STL)
OUTPUT_FORMAT= TECPLOT
%
% Output file convergence history (w/o extension)
CONV_FILENAME= history
%
% Output file restart flow
RESTART_FLOW_FILENAME= solution_flow.dat
%
% Output file restart adjoint
RESTART_ADJ_FILENAME= restart_adj.dat
%
% Output file linear flow
RESTART_LIN_FILENAME= restart_lin.dat
%
% Output file flow (w/o extension) variables
VOLUME_FLOW_FILENAME= flow
%
% Output file adjoint (w/o extension) variables
VOLUME_ADJ_FILENAME= adjoint
%
% Output file linearized (w/o extension) variables
VOLUME_LIN_FILENAME= linearized
%
% Output objective function gradient (using continuous adjoint)
GRAD_OBJFUNC_FILENAME= of_grad.dat
%
% Output file surface flow coefficient (w/o extension)
SURFACE_FLOW_FILENAME= surface_flow
%
% Output file surface adjoint coefficient (w/o extension)
SURFACE_ADJ_FILENAME= surface_adjoint
%
% Output file surface linear coefficient (w/o extension)
SURFACE_LIN_FILENAME= surface_linear
%
% Writing solution file frequency
WRT_SOL_FREQ= 250
%
% Writing convergence history frequency
WRT_CON_FREQ= 1

What can you suggest me?
Do you need my periodic mesh?

Thank you very much,

Best regards
ddar is offline   Reply With Quote

Old   May 10, 2016, 05:04
Default
  #24
New Member
 
Salvatore Vitale
Join Date: Aug 2014
Posts: 6
Rep Power: 12
salvovitale is on a distinguished road
Dear ddar,

first of all sorry for my late reply but I was not available last week.

I encountered the same problem once. In this case the problem is that your periodic mesh is not correctly generated by SU2. Can you send this testcase (config and originila mesh) to me so that I can have a look into it ?

cheers

sv
salvovitale is offline   Reply With Quote

Old   May 12, 2016, 13:57
Default SU2: an innovative software for compressible flow simulations
  #25
New Member
 
Join Date: Sep 2015
Posts: 17
Rep Power: 11
Luca S is on a distinguished road
Stanford University Unstructured: an innovative software for compressible flow simulations
We have studied both turbulent and inviscid compressible flow over a 3D geometry ONERA M6 and over a 2D turbine blade with periodic boundary condition.
Simulation results are compared with Fluent results.

https://www.dropbox.com/s/dbgdhcsmf5...tured.pdf?dl=0
Luca S is offline   Reply With Quote

Old   October 21, 2016, 08:40
Default Similar problem
  #26
hom
New Member
 
Heinz-Olaf Müller
Join Date: Oct 2016
Posts: 3
Rep Power: 10
hom is on a distinguished road
Hello,

I encountered a similar problem in 2D on v4.3.0. As this is my first script-generated SU2 mesh, I reckon, something is wrong with it, eventually causing the core dump. So, I want to extend the scope somwhat: Is there another SU2 mesh checker available? I have checked some basics, alas, nothing there. I attach mesh and cfg.

Thank you for any comment,
hom.
Attached Files
File Type: gz nozzle.su2.gz (166.6 KB, 2 views)
File Type: gz mesh.cfg.gz (210 Bytes, 0 views)
hom is offline   Reply With Quote

Old   October 24, 2016, 10:46
Default
  #27
hom
New Member
 
Heinz-Olaf Müller
Join Date: Oct 2016
Posts: 3
Rep Power: 10
hom is on a distinguished road
Sorry for my previous post, the problem was in my mesh generating script.

See you next time!
hom is offline   Reply With Quote

Old   December 19, 2016, 04:44
Default
  #28
New Member
 
Keith T.-
Join Date: Dec 2016
Posts: 8
Rep Power: 10
K31th is on a distinguished road
Quote:
Originally Posted by hom View Post
Sorry for my previous post, the problem was in my mesh generating script.

See you next time!
Hi hom,
I face the same issue as you, may i know how did you solve it or what was the root cause ?
K31th is offline   Reply With Quote

Old   December 19, 2016, 05:28
Default Nitty gritty
  #29
hom
New Member
 
Heinz-Olaf Müller
Join Date: Oct 2016
Posts: 3
Rep Power: 10
hom is on a distinguished road
Hi K31th,

I think, one problem is that SU2 tries the computation even for really bad meshes, where it cannot succeed. As a procedure, the correction was somewhat tedious. First, I had one script writing the mesh file, then a second one for comparing the line numbers with the numbers given to NELEM, NPOIN and MARKER_ELEMS, then a third one extracting arbitrary elements and points to see whether they are what I expected them to be. Quite embarrassing, I had errors on each level.

Unfortunately, all these scripts are strongly bound to what kind of geometry you want to write and in which order, so my scripts are of little help to you. So, all I can say is if the mesh is correct, SU2 runs flawless.

Good luck with your task.
hom is offline   Reply With Quote

Old   January 4, 2017, 23:06
Default
  #30
New Member
 
Keith T.-
Join Date: Dec 2016
Posts: 8
Rep Power: 10
K31th is on a distinguished road
Thank for the explanation. greatly appreciated

I tried your way, apparently i have multiple error thru each stages as well.
Anyway Thank again
K31th is offline   Reply With Quote

Reply

Tags
boundary condition, periodic condition, pressure drop


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Rotating blades of a fan by Fluent? guillaume1990 FLUENT 17 June 22, 2016 04:01
Rotating blades of a fan Fluent? guillaume1990 ANSYS 1 March 21, 2014 04:15
Moving Meshes or Rotating Refrence frame is suitable for Rotating Blades? arash_7444 FLUENT 3 March 21, 2011 02:07
Rotating blades fan problem Luk FLUENT 1 June 27, 2006 10:56
Rotating blades blower Luk FLUENT 0 June 27, 2006 10:54


All times are GMT -4. The time now is 04:07.