|
[Sponsors] |
May 4, 2016, 05:06 |
vki 3D Mesh error
|
#21 |
New Member
Dario
Join Date: Mar 2016
Posts: 8
Rep Power: 10 |
Hello!
I am working with 3D periodic Mesh of the same vki turbine. I have this problem with the simulation: ---------------------- Local Time Stepping Summary ---------------------- MG level: 0 -> Min. DT: 1.54419e-10. Max. DT: 1.64438e-07. CFL: 1. ------------------------------------------------------------------------- ----------------------- Residual Evolution Summary ---------------------- log10[Maximum residual]: 45.4432. Maximum residual point 46112, located at (-0.0184353, -0.0344776, 0.0196364). There are 673 non-physical points in the solution. ------------------------------------------------------------------------- Iter Time(s) Res[Rho] Res[RhoE] CLift(Total) CDrag(Total) 240 1.502260 42.917062 51.095536 -10000.000000 -10000.000000 241 1.501982 43.111468 51.269638 -10000.000000 -10000.000000 242 1.502388 43.346441 51.531235 -10000.000000 -10000.000000 243 1.502108 43.576183 51.765558 -10000.000000 -10000.000000 244 1.501836 43.756342 51.953424 -10000.000000 -10000.000000 245 1.501575 43.914932 52.108849 -10000.000000 -10000.000000 246 1.501313 44.128477 52.345214 -10000.000000 -10000.000000 247 1.501046 44.299564 52.507904 -10000.000000 -10000.000000 248 1.500784 44.485835 52.704873 -10000.000000 -10000.000000 249 1.500513 44.709052 52.932963 -10000.000000 -10000.000000 250 1.500254 44.891220 53.135733 -10000.000000 -10000.000000 -------------------------- File Output Summary -------------------------- Writing comma-separated values (CSV) surface files. Merging connectivities in the Master node. Merging coordinates in the Master node. *** Error in `SU2_CFD': free(): corrupted unsorted chunks: 0x000000002119f3c0 *** *** Error in `SU2_CFD': malloc(): memory corruption: 0x0000000021492020 *** Is there anyone who can help me? Thank you very much! This is the cfg: % ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% % % Physical governing equations (EULER, NAVIER_STOKES, NS_PLASMA) % PHYSICAL_PROBLEM= EULER % % Mathematical problem (DIRECT, ADJOINT, LINEARIZED) MATH_PROBLEM= DIRECT % % Restart solution (NO, YES) RESTART_SOL= NO % -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------% % % Mach number (non-dimensional, based on the free-stream values) MACH_NUMBER= 0.01 % % Angle of attack (degrees, only for compressible flows) AoA= 0.0 % % Side-slip angle (degrees, only for compressible flows) SIDESLIP_ANGLE= 0.0 % % Free-stream pressure (101325.0 N/m^2 by default) FREESTREAM_PRESSURE= 150000.0 % % Free-stream temperature (288.15 K by default) FREESTREAM_TEMPERATURE= 288.0 % ---------------------- REFERENCE VALUE DEFINITION ---------------------------% % % Reference origin for moment computation REF_ORIGIN_MOMENT_X = 0.25 REF_ORIGIN_MOMENT_Y = 0.00 REF_ORIGIN_MOMENT_Z = 0.00 % % Reference length for pitching, rolling, and yawing non-dimensional moment REF_LENGTH_MOMENT= 1.0 % % Reference area for force coefficients (0 implies automatic calculation) REF_AREA= 1.0 % % Reference element length for computing the slope limiter epsilon REF_ELEM_LENGTH= 0.1 % -------------------- BOUNDARY CONDITION DEFINITION --------------------------% % % Euler wall boundary marker(s) (NONE = no marker) MARKER_EULER= ( pala,wall1,wall2) % % Inlet boundary marker(s) (NONE = no marker) % Format: ( inlet marker, total temperature, total pressure, flow_direction_x, % flow_direction_y, flow_direction_z, ... ) where flow_direction is % a unit vector. % Default: Mach ~ 0.1 MARKER_INLET= ( ingresso, 348.0, 153960.0, 0.8667, 0.5, 0.0 ) % Comment above line and uncomment next for Mach ~ 0.7 (transonic) %MARKER_INLET= ( inlet, 316.224, 140513.23, 1.0, 0.0, 0.0 ) % % Outlet boundary marker(s) (NONE = no marker) % Format: ( outlet marker, back pressure (static), ... ) MARKER_OUTLET= ( uscita, 100000.0 ) % MARKER_PERIODIC= ( per2, per1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03408, 0.0 ) KIND_ADAPT= PERIODIC % MARKER_SYM= (sym,wall) % ------------------------ SURFACES IDENTIFICATION ----------------------------% % % Marker(s) of the surface to be plotted or designed MARKER_PLOTTING= ( pala ) % % Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated MARKER_MONITORING= ( pala ) % ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% % % Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) NUM_METHOD_GRAD= GREEN_GAUSS % % Courant-Friedrichs-Lewy condition of the finest grid CFL_NUMBER= 1.0 % % Adaptive CFL number (NO, YES) CFL_ADAPT= NO % % Parameters of the adaptive CFL number (factor down, factor up, CFL min value, % CFL max value ) CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 100.0 ) % % Runge-Kutta alpha coefficients RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 ) % % Number of total iterations EXT_ITER= 5000 % ------------------------ LINEAR SOLVER DEFINITION ---------------------------% % % Linear solver for implicit formulations (BCGSTAB, FGMRES) LINEAR_SOLVER= FGMRES % % Preconditioner of the Krylov linear solver (JACOBI, LINELET, LU_SGS) LINEAR_SOLVER_PREC= LU_SGS % % Minimum error of the linear solver for implicit formulations LINEAR_SOLVER_ERROR= 1E-4 % % Max number of iterations of the linear solver for the implicit formulation LINEAR_SOLVER_ITER= 100 % -------------------------- MULTIGRID PARAMETERS -----------------------------% % % Multi-Grid Levels (0 = no multi-grid) MGLEVEL= 0 % % Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE) MGCYCLE= V_CYCLE % % Multi-grid pre-smoothing level MG_PRE_SMOOTH= ( 1, 2, 3, 3 ) % % Multi-grid post-smoothing level MG_POST_SMOOTH= ( 0, 0, 0, 0 ) % % Jacobi implicit smoothing of the correction MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 ) % % Damping factor for the residual restriction MG_DAMP_RESTRICTION= 0.9 % % Damping factor for the correction prolongation MG_DAMP_PROLONGATION= 0.9 % -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% % % Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, % TURKEL_PREC, MSW) CONV_NUM_METHOD_FLOW= JST % % Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER) % SPATIAL_ORDER_FLOW= 2ND_ORDER_LIMITER % % Slope limiter (VENKATAKRISHNAN, MINMOD) SLOPE_LIMITER_FLOW= VENKATAKRISHNAN % % Coefficient for the limiter (smooth regions) LIMITER_COEFF= 0.3 % % 1st, 2nd and 4th order artificial dissipation coefficients AD_COEFF_FLOW= ( 0.15, 0.5, 0.02 ) % % Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) TIME_DISCRE_FLOW= EULER_IMPLICIT % --------------------------- CONVERGENCE PARAMETERS --------------------------% % % Convergence criteria (CAUCHY, RESIDUAL) % CONV_CRITERIA= RESIDUAL % % Residual reduction (order of magnitude with respect to the initial value) RESIDUAL_REDUCTION= 6 % % Min value of the residual (log10 of the residual) RESIDUAL_MINVAL= -12 % % Start convergence criteria at iteration number STARTCONV_ITER= 10 % % Number of elements to apply the criteria CAUCHY_ELEMS= 100 % % Epsilon to control the series convergence CAUCHY_EPS= 1E-10 % % Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, SENS_GEOMETRY, % SENS_MACH, DELTA_LIFT, DELTA_DRAG) CAUCHY_FUNC_FLOW= DRAG % ------------------------- INPUT/OUTPUT INFORMATION --------------------------% % % Mesh input file %MESH_FILENAME= mesh_out.su2 MESH_FILENAME= meshper.su2 % % Mesh input file format (SU2, CGNS, NETCDF_ASCII) MESH_FORMAT= SU2 % % Mesh output file MESH_OUT_FILENAME= meshper.su2 % % Restart flow input file SOLUTION_FLOW_FILENAME= solution_flow.dat % % Restart linear flow input file SOLUTION_LIN_FILENAME= solution_lin.dat % % Restart adjoint input file SOLUTION_ADJ_FILENAME= solution_adj.dat % % Output file format (PARAVIEW, TECPLOT, STL) OUTPUT_FORMAT= TECPLOT % % Output file convergence history (w/o extension) CONV_FILENAME= history % % Output file restart flow RESTART_FLOW_FILENAME= solution_flow.dat % % Output file restart adjoint RESTART_ADJ_FILENAME= restart_adj.dat % % Output file linear flow RESTART_LIN_FILENAME= restart_lin.dat % % Output file flow (w/o extension) variables VOLUME_FLOW_FILENAME= flow % % Output file adjoint (w/o extension) variables VOLUME_ADJ_FILENAME= adjoint % % Output file linearized (w/o extension) variables VOLUME_LIN_FILENAME= linearized % % Output objective function gradient (using continuous adjoint) GRAD_OBJFUNC_FILENAME= of_grad.dat % % Output file surface flow coefficient (w/o extension) SURFACE_FLOW_FILENAME= surface_flow % % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % % Output file surface linear coefficient (w/o extension) SURFACE_LIN_FILENAME= surface_linear % % Writing solution file frequency WRT_SOL_FREQ= 250 % % Writing convergence history frequency WRT_CON_FREQ= 1 In attacments there is my periodic mesh! Thank you very much, Best regards |
|
May 4, 2016, 05:08 |
|
#22 |
New Member
Dario
Join Date: Mar 2016
Posts: 8
Rep Power: 10 |
Hi salvovitale!
I am working with 3D periodic Mesh of the same vki turbine. I have this problem with the simulation: ---------------------- Local Time Stepping Summary ---------------------- MG level: 0 -> Min. DT: 1.54419e-10. Max. DT: 1.64438e-07. CFL: 1. ------------------------------------------------------------------------- ----------------------- Residual Evolution Summary ---------------------- log10[Maximum residual]: 45.4432. Maximum residual point 46112, located at (-0.0184353, -0.0344776, 0.0196364). There are 673 non-physical points in the solution. ------------------------------------------------------------------------- Iter Time(s) Res[Rho] Res[RhoE] CLift(Total) CDrag(Total) 240 1.502260 42.917062 51.095536 -10000.000000 -10000.000000 241 1.501982 43.111468 51.269638 -10000.000000 -10000.000000 242 1.502388 43.346441 51.531235 -10000.000000 -10000.000000 243 1.502108 43.576183 51.765558 -10000.000000 -10000.000000 244 1.501836 43.756342 51.953424 -10000.000000 -10000.000000 245 1.501575 43.914932 52.108849 -10000.000000 -10000.000000 246 1.501313 44.128477 52.345214 -10000.000000 -10000.000000 247 1.501046 44.299564 52.507904 -10000.000000 -10000.000000 248 1.500784 44.485835 52.704873 -10000.000000 -10000.000000 249 1.500513 44.709052 52.932963 -10000.000000 -10000.000000 250 1.500254 44.891220 53.135733 -10000.000000 -10000.000000 -------------------------- File Output Summary -------------------------- Writing comma-separated values (CSV) surface files. Merging connectivities in the Master node. Merging coordinates in the Master node. *** Error in `SU2_CFD': free(): corrupted unsorted chunks: 0x000000002119f3c0 *** *** Error in `SU2_CFD': malloc(): memory corruption: 0x0000000021492020 *** Is there anyone who can help me? Thank you very much! This is the cfg: % ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% % % Physical governing equations (EULER, NAVIER_STOKES, NS_PLASMA) % PHYSICAL_PROBLEM= EULER % % Mathematical problem (DIRECT, ADJOINT, LINEARIZED) MATH_PROBLEM= DIRECT % % Restart solution (NO, YES) RESTART_SOL= NO % -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------% % % Mach number (non-dimensional, based on the free-stream values) MACH_NUMBER= 0.01 % % Angle of attack (degrees, only for compressible flows) AoA= 0.0 % % Side-slip angle (degrees, only for compressible flows) SIDESLIP_ANGLE= 0.0 % % Free-stream pressure (101325.0 N/m^2 by default) FREESTREAM_PRESSURE= 150000.0 % % Free-stream temperature (288.15 K by default) FREESTREAM_TEMPERATURE= 288.0 % ---------------------- REFERENCE VALUE DEFINITION ---------------------------% % % Reference origin for moment computation REF_ORIGIN_MOMENT_X = 0.25 REF_ORIGIN_MOMENT_Y = 0.00 REF_ORIGIN_MOMENT_Z = 0.00 % % Reference length for pitching, rolling, and yawing non-dimensional moment REF_LENGTH_MOMENT= 1.0 % % Reference area for force coefficients (0 implies automatic calculation) REF_AREA= 1.0 % % Reference element length for computing the slope limiter epsilon REF_ELEM_LENGTH= 0.1 % -------------------- BOUNDARY CONDITION DEFINITION --------------------------% % % Euler wall boundary marker(s) (NONE = no marker) MARKER_EULER= ( pala,wall1,wall2) % % Inlet boundary marker(s) (NONE = no marker) % Format: ( inlet marker, total temperature, total pressure, flow_direction_x, % flow_direction_y, flow_direction_z, ... ) where flow_direction is % a unit vector. % Default: Mach ~ 0.1 MARKER_INLET= ( ingresso, 348.0, 153960.0, 0.8667, 0.5, 0.0 ) % Comment above line and uncomment next for Mach ~ 0.7 (transonic) %MARKER_INLET= ( inlet, 316.224, 140513.23, 1.0, 0.0, 0.0 ) % % Outlet boundary marker(s) (NONE = no marker) % Format: ( outlet marker, back pressure (static), ... ) MARKER_OUTLET= ( uscita, 100000.0 ) % MARKER_PERIODIC= ( per2, per1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03408, 0.0 ) KIND_ADAPT= PERIODIC % MARKER_SYM= (sym,wall) % ------------------------ SURFACES IDENTIFICATION ----------------------------% % % Marker(s) of the surface to be plotted or designed MARKER_PLOTTING= ( pala ) % % Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated MARKER_MONITORING= ( pala ) % ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% % % Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) NUM_METHOD_GRAD= GREEN_GAUSS % % Courant-Friedrichs-Lewy condition of the finest grid CFL_NUMBER= 1.0 % % Adaptive CFL number (NO, YES) CFL_ADAPT= NO % % Parameters of the adaptive CFL number (factor down, factor up, CFL min value, % CFL max value ) CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 100.0 ) % % Runge-Kutta alpha coefficients RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 ) % % Number of total iterations EXT_ITER= 5000 % ------------------------ LINEAR SOLVER DEFINITION ---------------------------% % % Linear solver for implicit formulations (BCGSTAB, FGMRES) LINEAR_SOLVER= FGMRES % % Preconditioner of the Krylov linear solver (JACOBI, LINELET, LU_SGS) LINEAR_SOLVER_PREC= LU_SGS % % Minimum error of the linear solver for implicit formulations LINEAR_SOLVER_ERROR= 1E-4 % % Max number of iterations of the linear solver for the implicit formulation LINEAR_SOLVER_ITER= 100 % -------------------------- MULTIGRID PARAMETERS -----------------------------% % % Multi-Grid Levels (0 = no multi-grid) MGLEVEL= 0 % % Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE) MGCYCLE= V_CYCLE % % Multi-grid pre-smoothing level MG_PRE_SMOOTH= ( 1, 2, 3, 3 ) % % Multi-grid post-smoothing level MG_POST_SMOOTH= ( 0, 0, 0, 0 ) % % Jacobi implicit smoothing of the correction MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 ) % % Damping factor for the residual restriction MG_DAMP_RESTRICTION= 0.9 % % Damping factor for the correction prolongation MG_DAMP_PROLONGATION= 0.9 % -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% % % Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, % TURKEL_PREC, MSW) CONV_NUM_METHOD_FLOW= JST % % Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER) % SPATIAL_ORDER_FLOW= 2ND_ORDER_LIMITER % % Slope limiter (VENKATAKRISHNAN, MINMOD) SLOPE_LIMITER_FLOW= VENKATAKRISHNAN % % Coefficient for the limiter (smooth regions) LIMITER_COEFF= 0.3 % % 1st, 2nd and 4th order artificial dissipation coefficients AD_COEFF_FLOW= ( 0.15, 0.5, 0.02 ) % % Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) TIME_DISCRE_FLOW= EULER_IMPLICIT % --------------------------- CONVERGENCE PARAMETERS --------------------------% % % Convergence criteria (CAUCHY, RESIDUAL) % CONV_CRITERIA= RESIDUAL % % Residual reduction (order of magnitude with respect to the initial value) RESIDUAL_REDUCTION= 6 % % Min value of the residual (log10 of the residual) RESIDUAL_MINVAL= -12 % % Start convergence criteria at iteration number STARTCONV_ITER= 10 % % Number of elements to apply the criteria CAUCHY_ELEMS= 100 % % Epsilon to control the series convergence CAUCHY_EPS= 1E-10 % % Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, SENS_GEOMETRY, % SENS_MACH, DELTA_LIFT, DELTA_DRAG) CAUCHY_FUNC_FLOW= DRAG % ------------------------- INPUT/OUTPUT INFORMATION --------------------------% % % Mesh input file %MESH_FILENAME= mesh_out.su2 MESH_FILENAME= meshper.su2 % % Mesh input file format (SU2, CGNS, NETCDF_ASCII) MESH_FORMAT= SU2 % % Mesh output file MESH_OUT_FILENAME= meshper.su2 % % Restart flow input file SOLUTION_FLOW_FILENAME= solution_flow.dat % % Restart linear flow input file SOLUTION_LIN_FILENAME= solution_lin.dat % % Restart adjoint input file SOLUTION_ADJ_FILENAME= solution_adj.dat % % Output file format (PARAVIEW, TECPLOT, STL) OUTPUT_FORMAT= TECPLOT % % Output file convergence history (w/o extension) CONV_FILENAME= history % % Output file restart flow RESTART_FLOW_FILENAME= solution_flow.dat % % Output file restart adjoint RESTART_ADJ_FILENAME= restart_adj.dat % % Output file linear flow RESTART_LIN_FILENAME= restart_lin.dat % % Output file flow (w/o extension) variables VOLUME_FLOW_FILENAME= flow % % Output file adjoint (w/o extension) variables VOLUME_ADJ_FILENAME= adjoint % % Output file linearized (w/o extension) variables VOLUME_LIN_FILENAME= linearized % % Output objective function gradient (using continuous adjoint) GRAD_OBJFUNC_FILENAME= of_grad.dat % % Output file surface flow coefficient (w/o extension) SURFACE_FLOW_FILENAME= surface_flow % % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % % Output file surface linear coefficient (w/o extension) SURFACE_LIN_FILENAME= surface_linear % % Writing solution file frequency WRT_SOL_FREQ= 250 % % Writing convergence history frequency WRT_CON_FREQ= 1 Do you need my mesh? Thank you very much, Best regards |
|
May 4, 2016, 05:18 |
|
#23 |
New Member
Dario
Join Date: Mar 2016
Posts: 8
Rep Power: 10 |
Hello salvovitale!
I am working with 3D periodic Mesh of the same vki turbine. I have this problem with the simulation: ---------------------- Local Time Stepping Summary ---------------------- MG level: 0 -> Min. DT: 1.54419e-10. Max. DT: 1.64438e-07. CFL: 1. ------------------------------------------------------------------------- ----------------------- Residual Evolution Summary ---------------------- log10[Maximum residual]: 45.4432. Maximum residual point 46112, located at (-0.0184353, -0.0344776, 0.0196364). There are 673 non-physical points in the solution. ------------------------------------------------------------------------- Iter Time(s) Res[Rho] Res[RhoE] CLift(Total) CDrag(Total) 240 1.502260 42.917062 51.095536 -10000.000000 -10000.000000 241 1.501982 43.111468 51.269638 -10000.000000 -10000.000000 242 1.502388 43.346441 51.531235 -10000.000000 -10000.000000 243 1.502108 43.576183 51.765558 -10000.000000 -10000.000000 244 1.501836 43.756342 51.953424 -10000.000000 -10000.000000 245 1.501575 43.914932 52.108849 -10000.000000 -10000.000000 246 1.501313 44.128477 52.345214 -10000.000000 -10000.000000 247 1.501046 44.299564 52.507904 -10000.000000 -10000.000000 248 1.500784 44.485835 52.704873 -10000.000000 -10000.000000 249 1.500513 44.709052 52.932963 -10000.000000 -10000.000000 250 1.500254 44.891220 53.135733 -10000.000000 -10000.000000 -------------------------- File Output Summary -------------------------- Writing comma-separated values (CSV) surface files. Merging connectivities in the Master node. Merging coordinates in the Master node. *** Error in `SU2_CFD': free(): corrupted unsorted chunks: 0x000000002119f3c0 *** *** Error in `SU2_CFD': malloc(): memory corruption: 0x0000000021492020 *** Is there anyone who can help me? Thank you very much! This is the cfg: % ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% % % Physical governing equations (EULER, NAVIER_STOKES, NS_PLASMA) % PHYSICAL_PROBLEM= EULER % % Mathematical problem (DIRECT, ADJOINT, LINEARIZED) MATH_PROBLEM= DIRECT % % Restart solution (NO, YES) RESTART_SOL= NO % -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------% % % Mach number (non-dimensional, based on the free-stream values) MACH_NUMBER= 0.01 % % Angle of attack (degrees, only for compressible flows) AoA= 0.0 % % Side-slip angle (degrees, only for compressible flows) SIDESLIP_ANGLE= 0.0 % % Free-stream pressure (101325.0 N/m^2 by default) FREESTREAM_PRESSURE= 150000.0 % % Free-stream temperature (288.15 K by default) FREESTREAM_TEMPERATURE= 288.0 % ---------------------- REFERENCE VALUE DEFINITION ---------------------------% % % Reference origin for moment computation REF_ORIGIN_MOMENT_X = 0.25 REF_ORIGIN_MOMENT_Y = 0.00 REF_ORIGIN_MOMENT_Z = 0.00 % % Reference length for pitching, rolling, and yawing non-dimensional moment REF_LENGTH_MOMENT= 1.0 % % Reference area for force coefficients (0 implies automatic calculation) REF_AREA= 1.0 % % Reference element length for computing the slope limiter epsilon REF_ELEM_LENGTH= 0.1 % -------------------- BOUNDARY CONDITION DEFINITION --------------------------% % % Euler wall boundary marker(s) (NONE = no marker) MARKER_EULER= ( pala,wall1,wall2) % % Inlet boundary marker(s) (NONE = no marker) % Format: ( inlet marker, total temperature, total pressure, flow_direction_x, % flow_direction_y, flow_direction_z, ... ) where flow_direction is % a unit vector. % Default: Mach ~ 0.1 MARKER_INLET= ( ingresso, 348.0, 153960.0, 0.8667, 0.5, 0.0 ) % Comment above line and uncomment next for Mach ~ 0.7 (transonic) %MARKER_INLET= ( inlet, 316.224, 140513.23, 1.0, 0.0, 0.0 ) % % Outlet boundary marker(s) (NONE = no marker) % Format: ( outlet marker, back pressure (static), ... ) MARKER_OUTLET= ( uscita, 100000.0 ) % MARKER_PERIODIC= ( per2, per1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03408, 0.0 ) KIND_ADAPT= PERIODIC % MARKER_SYM= (sym,wall) % ------------------------ SURFACES IDENTIFICATION ----------------------------% % % Marker(s) of the surface to be plotted or designed MARKER_PLOTTING= ( pala ) % % Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated MARKER_MONITORING= ( pala ) % ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% % % Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) NUM_METHOD_GRAD= GREEN_GAUSS % % Courant-Friedrichs-Lewy condition of the finest grid CFL_NUMBER= 1.0 % % Adaptive CFL number (NO, YES) CFL_ADAPT= NO % % Parameters of the adaptive CFL number (factor down, factor up, CFL min value, % CFL max value ) CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 100.0 ) % % Runge-Kutta alpha coefficients RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 ) % % Number of total iterations EXT_ITER= 5000 % ------------------------ LINEAR SOLVER DEFINITION ---------------------------% % % Linear solver for implicit formulations (BCGSTAB, FGMRES) LINEAR_SOLVER= FGMRES % % Preconditioner of the Krylov linear solver (JACOBI, LINELET, LU_SGS) LINEAR_SOLVER_PREC= LU_SGS % % Minimum error of the linear solver for implicit formulations LINEAR_SOLVER_ERROR= 1E-4 % % Max number of iterations of the linear solver for the implicit formulation LINEAR_SOLVER_ITER= 100 % -------------------------- MULTIGRID PARAMETERS -----------------------------% % % Multi-Grid Levels (0 = no multi-grid) MGLEVEL= 0 % % Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE) MGCYCLE= V_CYCLE % % Multi-grid pre-smoothing level MG_PRE_SMOOTH= ( 1, 2, 3, 3 ) % % Multi-grid post-smoothing level MG_POST_SMOOTH= ( 0, 0, 0, 0 ) % % Jacobi implicit smoothing of the correction MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 ) % % Damping factor for the residual restriction MG_DAMP_RESTRICTION= 0.9 % % Damping factor for the correction prolongation MG_DAMP_PROLONGATION= 0.9 % -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% % % Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, % TURKEL_PREC, MSW) CONV_NUM_METHOD_FLOW= JST % % Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER) % SPATIAL_ORDER_FLOW= 2ND_ORDER_LIMITER % % Slope limiter (VENKATAKRISHNAN, MINMOD) SLOPE_LIMITER_FLOW= VENKATAKRISHNAN % % Coefficient for the limiter (smooth regions) LIMITER_COEFF= 0.3 % % 1st, 2nd and 4th order artificial dissipation coefficients AD_COEFF_FLOW= ( 0.15, 0.5, 0.02 ) % % Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) TIME_DISCRE_FLOW= EULER_IMPLICIT % --------------------------- CONVERGENCE PARAMETERS --------------------------% % % Convergence criteria (CAUCHY, RESIDUAL) % CONV_CRITERIA= RESIDUAL % % Residual reduction (order of magnitude with respect to the initial value) RESIDUAL_REDUCTION= 6 % % Min value of the residual (log10 of the residual) RESIDUAL_MINVAL= -12 % % Start convergence criteria at iteration number STARTCONV_ITER= 10 % % Number of elements to apply the criteria CAUCHY_ELEMS= 100 % % Epsilon to control the series convergence CAUCHY_EPS= 1E-10 % % Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, SENS_GEOMETRY, % SENS_MACH, DELTA_LIFT, DELTA_DRAG) CAUCHY_FUNC_FLOW= DRAG % ------------------------- INPUT/OUTPUT INFORMATION --------------------------% % % Mesh input file %MESH_FILENAME= mesh_out.su2 MESH_FILENAME= meshper.su2 % % Mesh input file format (SU2, CGNS, NETCDF_ASCII) MESH_FORMAT= SU2 % % Mesh output file MESH_OUT_FILENAME= meshper.su2 % % Restart flow input file SOLUTION_FLOW_FILENAME= solution_flow.dat % % Restart linear flow input file SOLUTION_LIN_FILENAME= solution_lin.dat % % Restart adjoint input file SOLUTION_ADJ_FILENAME= solution_adj.dat % % Output file format (PARAVIEW, TECPLOT, STL) OUTPUT_FORMAT= TECPLOT % % Output file convergence history (w/o extension) CONV_FILENAME= history % % Output file restart flow RESTART_FLOW_FILENAME= solution_flow.dat % % Output file restart adjoint RESTART_ADJ_FILENAME= restart_adj.dat % % Output file linear flow RESTART_LIN_FILENAME= restart_lin.dat % % Output file flow (w/o extension) variables VOLUME_FLOW_FILENAME= flow % % Output file adjoint (w/o extension) variables VOLUME_ADJ_FILENAME= adjoint % % Output file linearized (w/o extension) variables VOLUME_LIN_FILENAME= linearized % % Output objective function gradient (using continuous adjoint) GRAD_OBJFUNC_FILENAME= of_grad.dat % % Output file surface flow coefficient (w/o extension) SURFACE_FLOW_FILENAME= surface_flow % % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % % Output file surface linear coefficient (w/o extension) SURFACE_LIN_FILENAME= surface_linear % % Writing solution file frequency WRT_SOL_FREQ= 250 % % Writing convergence history frequency WRT_CON_FREQ= 1 What can you suggest me? Do you need my periodic mesh? Thank you very much, Best regards |
|
May 10, 2016, 05:04 |
|
#24 |
New Member
Salvatore Vitale
Join Date: Aug 2014
Posts: 6
Rep Power: 12 |
Dear ddar,
first of all sorry for my late reply but I was not available last week. I encountered the same problem once. In this case the problem is that your periodic mesh is not correctly generated by SU2. Can you send this testcase (config and originila mesh) to me so that I can have a look into it ? cheers sv |
|
May 12, 2016, 13:57 |
SU2: an innovative software for compressible flow simulations
|
#25 |
New Member
Join Date: Sep 2015
Posts: 17
Rep Power: 11 |
Stanford University Unstructured: an innovative software for compressible flow simulations
We have studied both turbulent and inviscid compressible flow over a 3D geometry ONERA M6 and over a 2D turbine blade with periodic boundary condition. Simulation results are compared with Fluent results. https://www.dropbox.com/s/dbgdhcsmf5...tured.pdf?dl=0 |
|
October 21, 2016, 08:40 |
Similar problem
|
#26 |
New Member
Heinz-Olaf Müller
Join Date: Oct 2016
Posts: 3
Rep Power: 10 |
Hello,
I encountered a similar problem in 2D on v4.3.0. As this is my first script-generated SU2 mesh, I reckon, something is wrong with it, eventually causing the core dump. So, I want to extend the scope somwhat: Is there another SU2 mesh checker available? I have checked some basics, alas, nothing there. I attach mesh and cfg. Thank you for any comment, hom. |
|
October 24, 2016, 10:46 |
|
#27 |
New Member
Heinz-Olaf Müller
Join Date: Oct 2016
Posts: 3
Rep Power: 10 |
Sorry for my previous post, the problem was in my mesh generating script.
See you next time! |
|
December 19, 2016, 04:44 |
|
#28 |
New Member
Keith T.-
Join Date: Dec 2016
Posts: 8
Rep Power: 10 |
||
December 19, 2016, 05:28 |
Nitty gritty
|
#29 |
New Member
Heinz-Olaf Müller
Join Date: Oct 2016
Posts: 3
Rep Power: 10 |
Hi K31th,
I think, one problem is that SU2 tries the computation even for really bad meshes, where it cannot succeed. As a procedure, the correction was somewhat tedious. First, I had one script writing the mesh file, then a second one for comparing the line numbers with the numbers given to NELEM, NPOIN and MARKER_ELEMS, then a third one extracting arbitrary elements and points to see whether they are what I expected them to be. Quite embarrassing, I had errors on each level. Unfortunately, all these scripts are strongly bound to what kind of geometry you want to write and in which order, so my scripts are of little help to you. So, all I can say is if the mesh is correct, SU2 runs flawless. Good luck with your task. |
|
January 4, 2017, 23:06 |
|
#30 |
New Member
Keith T.-
Join Date: Dec 2016
Posts: 8
Rep Power: 10 |
Thank for the explanation. greatly appreciated
I tried your way, apparently i have multiple error thru each stages as well. Anyway Thank again |
|
Tags |
boundary condition, periodic condition, pressure drop |
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
Rotating blades of a fan by Fluent? | guillaume1990 | FLUENT | 17 | June 22, 2016 04:01 |
Rotating blades of a fan Fluent? | guillaume1990 | ANSYS | 1 | March 21, 2014 04:15 |
Moving Meshes or Rotating Refrence frame is suitable for Rotating Blades? | arash_7444 | FLUENT | 3 | March 21, 2011 02:07 |
Rotating blades fan problem | Luk | FLUENT | 1 | June 27, 2006 10:56 |
Rotating blades blower | Luk | FLUENT | 0 | June 27, 2006 10:54 |