|
[Sponsors] |
hard to convergent with SU2 4.0 for Euler adjoint |
|
LinkBack | Thread Tools | Search this Thread | Display Modes |
June 30, 2015, 16:36 |
hard to convergent with SU2 4.0 for Euler adjoint
|
#1 |
New Member
Xiangyu
Join Date: May 2015
Posts: 2
Rep Power: 0 |
Hi ,
I have changed from SU2 3.20 to 4.0 recently, but I have some issues with the Euler adjoint simulation . It seems the simulation with 4.0 is hard to convergent on the cases which convergent well with 3.20. I am wondering if there are any settings need to be changed? Here the config file for 4.0 is attached . Any suggestions will be appreciated ! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % SU2 configuration file % % Case description: Adjoint inv. ONERA M6 wing in inviscid flow (regression) % % Author: Francisco Palacios % % Institution: Stanford University % % Date: 06.16.2014 % % File Version 3.2.9 "eagle" % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% % % Physical governing equations (EULER, NAVIER_STOKES, % TNE2_EULER, TNE2_NAVIER_STOKES, % WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, % POISSON_EQUATION) PHYSICAL_PROBLEM= EULER % % Mathematical problem (DIRECT, ADJOINT) MATH_PROBLEM= ADJOINT % % Restart solution (NO, YES) RESTART_SOL= NO % -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------% % % Mach number (non-dimensional, based on the free-stream values) MACH_NUMBER= 0.85 % % Angle of attack (degrees) AoA= 5.31447 % % Free-stream pressure (101325.0 N/m^2 by default, only for Euler equations) FREESTREAM_PRESSURE= 101325.0 % % Free-stream temperature (288.15 K by default) FREESTREAM_TEMPERATURE= 288.15 % ---------------------- REFERENCE VALUE DEFINITION ---------------------------% % % % Reference origin for moment computation REF_ORIGIN_MOMENT_X = 0.2015 REF_ORIGIN_MOMENT_Y = 0.00 REF_ORIGIN_MOMENT_Z = 0.00 % % Reference length for pitching, rolling, and yawing non-dimensional moment REF_LENGTH_MOMENT= 0.64607 % % Reference area for force coefficients (0 implies automatic calculation) REF_AREA= 0 % % Flow non-dimensionalization (DIMENSIONAL, FREESTEAM_PRESS_EQ_ONE, % FREESTEAM_VEL_EQ_MACH, FREESTEAM_VEL_EQ_ONE) %REF_DIMENSIONALIZATION= FREESTEAM_PRESS_EQ_ONE % ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% % % Marker of the Euler boundary (0 implies no marker) MARKER_EULER= ( aircraft ) % % Marker of the far field (0 implies no marker) MARKER_FAR= ( farfield ) % % Marker of symmetry boundary (0 implies no marker) MARKER_SYM= ( symmetry ) % % Marker of the surface which is going to be plotted or designed MARKER_PLOTTING= ( aircraft ) % % Marker of the surface where the functional (Cd, Cl, etc.) will be evaluated MARKER_MONITORING= ( aircraft ) % ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% % % Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES) NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES % % Objective function in optimization problem (DRAG, LIFT, SIDEFORCE, MOMENT_X, % MOMENT_Y, MOMENT_Z, EFFICIENCY, % EQUIVALENT_AREA, NEARFIELD_PRESSURE, % FORCE_X, FORCE_Y, FORCE_Z, THRUST, % TORQUE, FREE_SURFACE, TOTAL_HEATFLUX, % MAXIMUM_HEATFLUX, INVERSE_DESIGN_PRESSURE, % INVERSE_DESIGN_HEATFLUX) OBJECTIVE_FUNCTION= DRAG % % Courant-Friedrichs-Lewy condition of the finest grid CFL_NUMBER= 5.0 % % Adaptive CFL number (NO, YES) CFL_ADAPT= YES % % Parameters of the adaptive CFL number (factor down, factor up, CFL min value, % CFL max value ) CFL_ADAPT_PARAM= ( 1.5, 0.5, 1.0, 100.0 ) % % Runge-Kutta alpha coefficients RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 ) % % Number of total iterations EXT_ITER= 600 % ----------------------- SLOPE LIMITER DEFINITION ----------------------------% % % Reference element length for computing the slope and sharp edges limiters. REF_ELEM_LENGTH= 0.1 % % Coefficient for the limiter LIMITER_COEFF= 0.3 % % Coefficient for the sharp edges limiter SHARP_EDGES_COEFF= 1.0 % % Reference coefficient (sensitivity) for detecting sharp edges. REF_SHARP_EDGES= 3.0 % % Remove sharp edges from the sensitivity evaluation (NO, YES) SENS_REMOVE_SHARP= YES % ------------------------ LINEAR SOLVER DEFINITION ---------------------------% % % Linear solver for the implicit formulation (BCGSTAB, FGMRES) LINEAR_SOLVER= FGMRES % % Preconditioner of the Krylov linear solver (JACOBI, LINELET, LU_SGS) LINEAR_SOLVER_PREC= LU_SGS % % Min error of the linear solver for the implicit formulation LINEAR_SOLVER_ERROR= 1E-6 % % Max number of iterations of the linear solver for the implicit formulation LINEAR_SOLVER_ITER= 5 % -------------------------- MULTIGRID PARAMETERS -----------------------------% % % Multi-Grid Levels (0 = no multi-grid) MGLEVEL= 2 % % Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE) MGCYCLE= V_CYCLE % % Multi-Grid PreSmoothing Level MG_PRE_SMOOTH= ( 1, 2, 3, 3 ) % % Multi-Grid PostSmoothing Level MG_POST_SMOOTH= ( 0, 0, 0, 0 ) % % Jacobi implicit smoothing of the correction MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 ) % % Damping factor for the residual restriction MG_DAMP_RESTRICTION= 0.9 % % Damping factor for the correction prolongation MG_DAMP_PROLONGATION= 0.9 % --------------------- FLOW NUMERICAL METHOD DEFINITION ----------------------% % Convective numerical method: (JST, LAX-FRIEDRICH, ROE-1ST_ORDER, % ROE-2ND_ORDER) CONV_NUM_METHOD_FLOW= JST % % Slope limiter: (VENKATAKRISHNAN) SLOPE_LIMITER_FLOW= VENKATAKRISHNAN % % 1st, 2nd and 4th order artificial dissipation coefficients AD_COEFF_FLOW= ( 0.15, 0.5, 0.04 ) % % Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) TIME_DISCRE_FLOW= EULER_IMPLICIT % ----------------- ADJOINT-FLOW NUMERICAL METHOD DEFINITION ------------------% % % Convective numerical method: (JST, LAX-FRIEDRICH, ROE-1ST_ORDER, % ROE-2ND_ORDER) CONV_NUM_METHOD_ADJFLOW= JST % % Slope limiter: (VENKATAKRISHNAN, SHARP_EDGES) SLOPE_LIMITER_ADJFLOW= VENKATAKRISHNAN % % 1st, 2nd, and 4th order artificial dissipation coefficients AD_COEFF_ADJFLOW= ( 0.15, 0.2, 0.02) % % Reduction factor of the CFL coefficient in the adjoint problem CFL_REDUCTION_ADJFLOW= 0.01 % % Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT) TIME_DISCRE_ADJFLOW= EULER_IMPLICIT % ----------------------- GEOMETRY EVALUATION PARAMETERS ----------------------% % % Geometrical evaluation mode (FUNCTION, GRADIENT) GEO_MODE= FUNCTION % % Marker(s) of the surface where geometrical based func. will be evaluated GEO_MARKER= ( aircraft ) % % Number of airfoil sections GEO_NUMBER_SECTIONS= 5 % % Orientation of airfoil sections (X_AXIS, Y_AXIS, Z_AXIS) GEO_ORIENTATION_SECTIONS= Y_AXIS % % Location (coordinate) of the airfoil sections (MinValue, MaxValue) GEO_LOCATION_SECTIONS= (0.0806, 1.1284) % % Plot loads and Cp distributions on each airfoil section GEO_PLOT_SECTIONS= NO % % Number of section cuts to make when calculating internal volume GEO_VOLUME_SECTIONS= 101 % --------------------------- CONVERGENCE PARAMETERS --------------------------& % % Convergence criteria (CAUCHY, RESIDUAL) CONV_CRITERIA= RESIDUAL % % Residual reduction (order of magnitude with respect to the initial value) RESIDUAL_REDUCTION= 5 % % Min value of the residual (log10 of the residual) RESIDUAL_MINVAL= -6.5 % % Start convergence criteria at iteration number STARTCONV_ITER= 100 % % Number of elements to apply the criteria CAUCHY_ELEMS= 100 % % Epsilon to control the series convergence CAUCHY_EPS= 1E-10 % % Direct function to apply the convergence criteria (LIFT, DRAG, NEARFIELD_PRESS) CAUCHY_FUNC_FLOW= DRAG % % Adjoint function to apply the convergence criteria (SENS_GEOMETRY, SENS_MACH) CAUCHY_FUNC_ADJFLOW= SENS_GEOMETRY % ------------------------- INPUT/OUTPUT INFORMATION --------------------------% % % Mesh input file MESH_FILENAME= BWB450_FrEACs_1mil.su2 % % Mesh output file MESH_OUT_FILENAME= mesh_out.su2 % % Restart flow input file SOLUTION_FLOW_FILENAME= solution_flow.dat % % Restart adjoint input file SOLUTION_ADJ_FILENAME= solution_adj.dat % % Mesh input file format (SU2) MESH_FORMAT= SU2 % % Output file format (PARAVIEW, TECPLOT) OUTPUT_FORMAT= TECPLOT % % Output file convergence history CONV_FILENAME= history % % Output file restart flow RESTART_FLOW_FILENAME= restart_flow.dat % % Output file restart adjoint RESTART_ADJ_FILENAME= restart_adj.dat % % Output file flow (w/o extension) variables VOLUME_FLOW_FILENAME= flow % % Output file adjoint (w/o extension) variables VOLUME_ADJ_FILENAME= adjoint % % Output Objective function gradient (using continuous adjoint) GRAD_OBJFUNC_FILENAME= of_grad.dat % % Output file surface flow coefficient (w/o extension) SURFACE_FLOW_FILENAME= surface_flow % % Output file surface adjoint coefficient (w/o extension) SURFACE_ADJ_FILENAME= surface_adjoint % % Writing solution file frequency WRT_SOL_FREQ= 500 % % Writing solution file frequency for physical time steps (dual time) WRT_SOL_FREQ_DUALTIME= 1 % % Writing convergence history frequency WRT_CON_FREQ= 1 % % Writing convergence history frequency (dual time, only written to screen) WRT_CON_FREQ_DUALTIME= 10 % % Output rind layers in the solution files WRT_HALO= NO % ----------------------- DESIGN VARIABLE PARAMETERS --------------------------% % % Kind of deformation (FFD_SETTING, FFD_CONTROL_POINT_2D, FFD_CAMBER_2D, FFD_THICKNESS_2D, % HICKS_HENNE, COSINE_BUMP, PARABOLIC, % NACA_4DIGITS, DISPLACEMENT, ROTATION, FFD_CONTROL_POINT, % FFD_DIHEDRAL_ANGLE, FFD_TWIST_ANGLE, FFD_ROTATION, % FFD_CAMBER, FFD_THICKNESS, FFD_CONTROL_SURFACE, SURFACE_FILE, AIRFOIL) DV_KIND= FFD_CONTROL_POINT % % Marker of the surface in which we are going apply the shape deformation DV_MARKER= ( UPPER_SIDE, LOWER_SIDE, TIP ) % % Parameters of the shape deformation % - FFD_CONTROL_POINT ( FFD_BoxTag, i_Ind, j_Ind, k_Ind, x_Disp, y_Disp, z_Disp ) % - FFD_DIHEDRAL_ANGLE ( FFD_BoxTag, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End ) % - FFD_TWIST_ANGLE ( FFD_BoxTag, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End ) % - FFD_ROTATION ( FFD_BoxTag, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End ) % - FFD_CAMBER ( FFD_BoxTag, i_Ind, j_Ind ) % - FFD_THICKNESS ( FFD_BoxTag, i_Ind, j_Ind ) % - FFD_VOLUME ( FFD_BoxTag, i_Ind, j_Ind ) DV_PARAM= ( WING, 1, 0, 0, 0.0, 0.0, 1.0 ) % % New value of the shape deformation DV_VALUE= 0.0 % ------------------------ GRID DEFORMATION PARAMETERS ------------------------% % Visualize the deformation (NO, YES) VISUALIZE_DEFORMATION= NO % --------------------- OPTIMAL SHAPE DESIGN DEFINITION -----------------------% % Available flow based objective functions or constraint functions % DRAG, LIFT, SIDEFORCE, EFFICIENCY, % FORCE_X, FORCE_Y, FORCE_Z, % MOMENT_X, MOMENT_Y, MOMENT_Z, % THRUST, TORQUE, FIGURE_OF_MERIT, % EQUIVALENT_AREA, NEARFIELD_PRESSURE, % FREE_SURFACE % % Available geometrical based objective functions or constraint functions % MAX_THICKNESS, 1/4_THICKNESS, 1/2_THICKNESS, 3/4_THICKNESS, AREA, AOA, CHORD, % MAX_THICKNESS_SEC1, MAX_THICKNESS_SEC2, MAX_THICKNESS_SEC3, MAX_THICKNESS_SEC4, MAX_THICKNESS_SEC5, % 1/4_THICKNESS_SEC1, 1/4_THICKNESS_SEC2, 1/4_THICKNESS_SEC3, 1/4_THICKNESS_SEC4, 1/4_THICKNESS_SEC5, % 1/2_THICKNESS_SEC1, 1/2_THICKNESS_SEC2, 1/2_THICKNESS_SEC3, 1/2_THICKNESS_SEC4, 1/2_THICKNESS_SEC5, % 3/4_THICKNESS_SEC1, 3/4_THICKNESS_SEC2, 3/4_THICKNESS_SEC3, 3/4_THICKNESS_SEC4, 3/4_THICKNESS_SEC5, % AREA_SEC1, AREA_SEC2, AREA_SEC3, AREA_SEC4, AREA_SEC5, % AOA_SEC1, AOA_SEC2, AOA_SEC3, AOA_SEC4, AOA_SEC5, % CHORD_SEC1, CHORD_SEC2, CHORD_SEC3, CHORD_SEC4, CHORD_SEC5 % % Available design variables % HICKS_HENNE ( 1, Scale | Mark. List | Lower(0)/Upper(1) side, x_Loc ) % COSINE_BUMP ( 2, Scale | Mark. List | Lower(0)/Upper(1) side, x_Loc, x_Size ) % SPHERICAL ( 3, Scale | Mark. List | ControlPoint_Index, Theta_Disp, R_Disp ) % NACA_4DIGITS ( 4, Scale | Mark. List | 1st digit, 2nd digit, 3rd and 4th digit ) % DISPLACEMENT ( 5, Scale | Mark. List | x_Disp, y_Disp, z_Disp ) % ROTATION ( 6, Scale | Mark. List | x_Axis, y_Axis, z_Axis, x_Turn, y_Turn, z_Turn ) % FFD_CONTROL_POINT ( 7, Scale | Mark. List | FFD_BoxTag, i_Ind, j_Ind, k_Ind, x_Mov, y_Mov, z_Mov ) % FFD_DIHEDRAL_ANGLE ( 8, Scale | Mark. List | FFD_BoxTag, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End ) % FFD_TWIST_ANGLE ( 9, Scale | Mark. List | FFD_BoxTag, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End ) % FFD_ROTATION ( 10, Scale | Mark. List | FFD_BoxTag, x_Orig, y_Orig, z_Orig, x_End, y_End, z_End ) % FFD_CAMBER ( 11, Scale | Mark. List | FFD_BoxTag, i_Ind, j_Ind ) % FFD_THICKNESS ( 12, Scale | Mark. List | FFD_BoxTag, i_Ind, j_Ind ) % FFD_VOLUME ( 13, Scale | Mark. List | FFD_BoxTag, i_Ind, j_Ind ) % FOURIER ( 14, Scale | Mark. List | Lower(0)/Upper(1) side, index, cos(0)/sin(1) ) % % Optimization objective function with scaling factor % ex= Objective * Scale OPT_OBJECTIVE= DRAG * 0.1 % % Optimization constraint functions with scaling factors, separated by semicolons % ex= (Objective = Value ) * Scale, use '>','<','=' OPT_CONSTRAINT= (LIFT > 0.2864) * 0.1; (MAX_THICKNESS_SEC1 > 0.0570) * 0.1; (MAX_THICKNESS_SEC2 > 0.0513) * 0.1; (MAX_THICKNESS_SEC3 > 0.0457) * 0.1; (MAX_THICKNESS_SEC4 > 0.0399) * 0.1; (MAX_THICKNESS_SEC5 > 0.0343) * 0.1 % |
|
July 14, 2015, 18:09 |
|
#2 |
Super Moderator
Thomas D. Economon
Join Date: Jan 2013
Location: Stanford, CA
Posts: 271
Rep Power: 14 |
Hi,
Thanks for your comment. Indeed, with v4.0 we did change a number of things (that should be helpful!), so it is likely that your original config files may need to be modified a bit in order to recover the performance. First, were you able to get the adjoint test cases for v4.0 working with v4.0 of the code? These should be working quite well, and you can use them as a template. Additionally, one important thing to note is that the non-dimensionalization schemes for both the flow and adjoint problems changed with v4.0. This has an impact on the numerics, so this could be a likely reason that the convergence properties have changed with your old configuration. I would recommend that you explore the various options related to non-dim. and the numerical methods, and you should recover your performance. Hope this helps, Tom |
|
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
wrong SU2 calculation for lift and drag coefficient for NAC4421 | mechy | SU2 | 7 | January 9, 2017 06:18 |
Problems launching adjoint | max_ | SU2 | 2 | March 12, 2016 12:32 |
Question about SU2 optimization | YoniHe | SU2 Shape Design | 3 | January 15, 2016 01:31 |
SU2 Mesh Adaptation Using Adjoint and Gradient-based Methods | Ashkaari | SU2 | 0 | August 28, 2014 06:43 |
best setting for SU2 | mechy | SU2 | 3 | April 20, 2014 20:13 |