|
[Sponsors] |
October 3, 2014, 12:38 |
Low mach number flat plate
|
#1 |
Member
Zeno
Join Date: Sep 2013
Location: Delft, The Netherlands
Posts: 63
Rep Power: 13 |
I am running simulations at low Mach numbers for a flat plate.
I have created two grids, one with ca.200000 points and another with ca. 13000 points and my y+<=1. If I run the simulation with the coarse grid the solution converges and gives nice results. However, if I run it with the fine grid and keep the same parameters i get "nan" values for CL and CD in the history.plt file. I can't figure out why. Any help is appreciated. P.S. The same happens if I run the simulation on a coarse grid but at a M=0.1 instead of M=0.15. Attached is the configuration file I've used and the history.plt file with nan values Code:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % SU2 configuration file % % Case description: Turbulent flow over flat plate with zero pressure gradient % % Author: Thomas D. Economon % % Institution: Stanford University % % Date: 2011.11.10 % % File Version 3.2.2 "eagle" % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% % % Physical governing equations (EULER, NAVIER_STOKES, % TNE2_EULER, TNE2_NAVIER_STOKES, % WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY, % POISSON_EQUATION) PHYSICAL_PROBLEM= NAVIER_STOKES % % If Navier-Stokes, kind of turbulent model (NONE, SA) KIND_TURB_MODEL= SST % % Mathematical problem (DIRECT, ADJOINT, LINEARIZED, ONE_SHOT_ADJOINT) MATH_PROBLEM= DIRECT % % Restart solution (NO, YES) RESTART_SOL= NO % ----------- COMPRESSIBLE AND INCOMPRESSIBLE FREE-STREAM DEFINITION ----------% % % Mach number (non-dimensional, based on the free-stream values) MACH_NUMBER= 0.15 % % Angle of attack (degrees) AoA= 0.0 % % Side-slip angle (degrees) SIDESLIP_ANGLE= 0.0 % % Free-stream temperature (288.15 K by default) FREESTREAM_TEMPERATURE= 288.15 % % Reynolds number (non-dimensional, based on the free-stream values) REYNOLDS_NUMBER= 7.68E5 % % Reynolds length (in meters) REYNOLDS_LENGTH= 0.34 % ---------------------- REFERENCE VALUE DEFINITION ---------------------------% % % Reference origin for moment computation REF_ORIGIN_MOMENT_X = 0.25 REF_ORIGIN_MOMENT_Y = 0.00 REF_ORIGIN_MOMENT_Z = 0.00 % % Reference length for pitching, rolling, and yawing non-dimensional moment REF_LENGTH_MOMENT= 1.0 % % Reference area for force coefficients (0 implies automatic calculation) REF_AREA= 0 % % Reference pressure (101325.0 N/m^2 by default) REF_PRESSURE= 1.0 % % Reference temperature (273.15 K by default) REF_TEMPERATURE= 1.0 % % Reference density (1.2886 Kg/m^3 (air), 998.2 Kg/m^3 (water)) REF_DENSITY= 1.0 % % -------------------- BOUNDARY CONDITION DEFINITION --------------------------% % % Navier-Stokes wall boundary marker(s) (NONE = no marker) MARKER_HEATFLUX= ( wall, 0.0 ) % MARKER_FAR= (inlet, outlet, farfield) % % Inlet boundary marker(s) (NONE = no marker) % Format: ( inlet marker, total temperature, total pressure, flow_direction_x, % flow_direction_y, flow_direction_z, ... ) %MARKER_INLET= ( inlet, 302.4, 118309.784, 1.0, 0.0, 0.0 ) % % Outlet boundary marker(s) (NONE = no marker) % Format: ( outlet marker, back pressure, ... ) %MARKER_OUTLET= ( outlet, 115056.0, farfield, 115056.0 ) % % Symmetry boundary marker(s) (NONE = no marker) MARKER_SYM= ( symmetry ) % % Marker(s) of the surface to be plotted or designed MARKER_PLOTTING= ( wall ) % % Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated MARKER_MONITORING= ( wall ) % ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% % % Numerical method for spatial gradients (GREEN_GAUSS, LEAST_SQUARES, % WEIGHTED_LEAST_SQUARES) NUM_METHOD_GRAD= GREEN_GAUSS % % Courant-Friedrichs-Lewy condition of the finest grid CFL_NUMBER= 10.0 % % CFL ramp (factor, number of iterations, CFL limit) CFL_RAMP= ( 1.2, 250, 1.0 ) % % Runge-Kutta alpha coefficients RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 ) % % Number of total iterations EXT_ITER= 99999 % ----------------------- SLOPE LIMITER DEFINITION ----------------------------% % % Reference element length for computing the slope and sharp edges limiters. REF_ELEM_LENGTH= 0.1 % % Coefficient for the limiter LIMITER_COEFF= 1.0 % % Coefficient for the sharp edges limiter SHARP_EDGES_COEFF= 3.0 % % Reference coefficient (sensitivity) for detecting sharp edges. REF_SHARP_EDGES= 3.0 % % Remove sharp edges from the sensitivity evaluation (NO, YES) SENS_REMOVE_SHARP= NO % -------------------------- MULTIGRID PARAMETERS -----------------------------% % % Multi-Grid Levels (0 = no multi-grid) MGLEVEL= 3 % % Multi-Grid Cycle (0 = V cycle, 1 = W Cycle) MGCYCLE= 0 % % Maximum number of children in the agglomeration stage MAX_CHILDREN= 250 % % Maximum length of an agglomerated element (relative to the domain) MAX_DIMENSION= 0.1 % % Multigrid pre-smoothing level MG_PRE_SMOOTH= ( 1, 2, 3, 3 ) % % Multigrid post-smoothing level MG_POST_SMOOTH= ( 2, 2, 2, 2) % % Jacobi implicit smoothing of the correction MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 ) % % Damping factor for the residual restriction MG_DAMP_RESTRICTION= 0.8 % % Damping factor for the correction prolongation MG_DAMP_PROLONGATION= 0.8 % -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% % % Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC, % TURKEL_PREC, MSW) CONV_NUM_METHOD_FLOW= ROE % % Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER) % SPATIAL_ORDER_FLOW= 2ND_ORDER % % Slope limiter (VENKATAKRISHNAN, MINMOD) SLOPE_LIMITER_FLOW= VENKATAKRISHNAN % % 1st, 2nd and 4th order artificial dissipation coefficients AD_COEFF_FLOW= ( 0.15, 0.5, 0.02 ) % % Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) TIME_DISCRE_FLOW= EULER_IMPLICIT % -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------% % % Convective numerical method (SCALAR_UPWIND) CONV_NUM_METHOD_TURB= SCALAR_UPWIND % % Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER) SPATIAL_ORDER_TURB= 1ST_ORDER % % Slope limiter (VENKATAKRISHNAN, MINMOD) SLOPE_LIMITER_TURB= VENKATAKRISHNAN % % Time discretization (EULER_IMPLICIT) TIME_DISCRE_TURB= EULER_IMPLICIT % --------------------------- PARTITIONING STRATEGY ---------------------------% % Write a paraview file for each partition (NO, YES) VISUALIZE_PART= NO % --------------------------- CONVERGENCE PARAMETERS --------------------------% % % Convergence criteria (CAUCHY, RESIDUAL) CONV_CRITERIA= RESIDUAL % % Residual reduction (order of magnitude with respect to the initial value) RESIDUAL_REDUCTION= 4 % % Min value of the residual (log10 of the residual) RESIDUAL_MINVAL= -15 % % Start convergence criteria at iteration number STARTCONV_ITER= 10 % % Number of elements to apply the criteria CAUCHY_ELEMS= 100 % % Epsilon to control the series convergence CAUCHY_EPS= 1E-6 % % Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, SENS_GEOMETRY, % SENS_MACH, DELTA_LIFT, DELTA_DRAG) CAUCHY_FUNC_FLOW= DRAG % % Epsilon for full multigrid method evaluation FULLMG_CAUCHY_EPS= 1E-4 % ------------------------- INPUT/OUTPUT INFORMATION --------------------------% (...) Code:
TITLE = "SU2 Simulation" VARIABLES = "Iteration","CLift","CDrag","CSideForce","CMx","CMy","CMz","CFx","CFy","CFz","CL/CD","Res_Flow[0]","Res_Flow[1]","Res_Flow[2]","Res_Flow[3]","Res_Flow[4]","Res_Turb[0]","Res_Turb[1]","Linear_Solver_Iterations","Time(min)" ZONE T= "Convergence history" 0, -nan, -nan, 0.0000000000, 0.0000000000, 0.0000000000, -nan, -nan, -nan, 0.0000000000, -nan, -15.9846856557, -13.9265125380, -13.8233443039, -10.5124533135, 0.0000000000, 0.0419222738, 3.6516429409, 4.0000000000, 0.0299452980 1, -nan, -nan, 0.0000000000, 0.0000000000, 0.0000000000, -nan, -nan, -nan, 0.0000000000, -nan, -3.6954519447, -1.5442531325, -1.1882649389, 1.7752025304, 0.0000000000, -0.0353532016, 5.3434581364, 3.0000000000, 0.0546764652 2, -nan, -nan, 0.0000000000, 0.0000000000, 0.0000000000, -nan, -nan, -nan, 0.0000000000, -nan, -3.8676843444, -1.4815741116, -1.3597587230, 1.6052160896, 0.0000000000, -0.1042338798, 5.3375754735, 3.0000000000, 0.0822579821 3, -nan, -nan, 0.0000000000, 0.0000000000, 0.0000000000, -nan, -nan, -nan, 0.0000000000, -nan, -3.8855504594, -1.4444749862, -1.6164142866, 1.5843708437, 0.0000000000, -0.1662656983, 5.3116471667, 3.0000000000, 0.1137784481 4, -nan, -nan, 0.0000000000, 0.0000000000, 0.0000000000, -nan, -nan, -nan, 0.0000000000, -nan, -3.9637091757, -1.4399159288, -1.8265368904, 1.5041123760, 0.0000000000, -0.2225641911, 5.2699935908, 4.0000000000, 0.1470720649 5, -nan, -nan, 0.0000000000, 0.0000000000, 0.0000000000, -nan, -nan, -nan, 0.0000000000, -nan, -4.1157328703, -1.4550295523, -1.8058019555, 1.3510765514, 0.0000000000, -0.2739458981, 5.2182425628, 4.0000000000, 0.1804092487 6, -nan, -nan, 0.0000000000, 0.0000000000, 0.0000000000, -nan, -nan, -nan, 0.0000000000, -nan, -4.2963276198, -1.4767874066, -1.8192751668, 1.1691403734, 0.0000000000, -0.3211715772, 5.1625753899, 4.0000000000, 0.2137426297 (...) |
|
October 6, 2014, 07:59 |
|
#2 |
Member
Zeno
Join Date: Sep 2013
Location: Delft, The Netherlands
Posts: 63
Rep Power: 13 |
The problem was with REF_AREA erroneously set to 0 for a 2D case.
|
|
Tags |
flat plate, low mach, nan |
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
Low Mach Number Compressible Multiphase Flows | DarrenC | CFX | 10 | May 26, 2014 09:52 |
Low Mach Number for Combustion | sahm | OpenFOAM | 10 | October 11, 2013 21:43 |
Low Reynolds Number Flow over a Flat Plate | Go | FLUENT | 4 | August 28, 2013 06:19 |
compressible at low Mach number with uniteration | ricklee | Main CFD Forum | 2 | October 21, 2005 00:15 |
TVD scheme at low Mach number | Axel Rohde | Main CFD Forum | 5 | August 6, 1999 03:01 |