CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Software User Forums > SU2

Incompressible simulation

Register Blogs Community New Posts Updated Threads Search

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   April 15, 2014, 09:54
Default Incompressible simulation
  #1
Member
 
Brugiere Olivier
Join Date: Mar 2009
Posts: 34
Rep Power: 17
brugiere_olivier is on a distinguished road
hi all,

I'm new user of SU2. I would like to make tests of the adjoint solver on a rear-view mirror to reduce the drag coefficient.
In SU2 v2.0, I can make a simulation without the adjoint part. I've upgraded my version of SU2 and I can't reproduce this case now. I don't find how to have wall without temperature like with MARKER_NS. To the car and the rear-view mirror, I've four boundary conditions (car, arm, mirror and mirror_plate).

If some body can give me some advices, I give my configuration file.

Code:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                              %
% Stanford University unstructured (SU2) configuration file                    %
% Case description: Turbulent flow over flat plate with zero pressure gradient %
% Author: Thomas D. Economon                                                   %
% Institution: Stanford University                                             %
% Date: 2011.11.10                                                             %
% File Version 1.0.12 January 5th, 2012                                        %
%                                                                              %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations (EULER, NAVIER_STOKES,
%                               TNE2_EULER, TNE2_NAVIER_STOKES,
%                               WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY,
%                               POISSON_EQUATION)
PHYSICAL_PROBLEM= NAVIER_STOKES
%
% Specify turbulence model (NONE, SA, SST)
KIND_TURB_MODEL= SA
%
% Mathematical problem (DIRECT, ADJOINT, LINEARIZED)
MATH_PROBLEM= DIRECT
%
% Restart solution (NO, YES)
RESTART_SOL= NO
%
% Regime type (COMPRESSIBLE, INCOMPRESSIBLE, FREESURFACE)
REGIME_TYPE= INCOMPRESSIBLE
%
% Gravity force, only incompressible (NO, YES)
GRAVITY_FORCE= NO
%
% Axisymmetric simulation, only compressible (NO, YES)
AXISYMMETRIC= NO
%
% Perform a low fidelity simulation (NO, YES)
LOW_FIDELITY_SIMULATION= NO

% -------------------- INCOMPRESSIBLE FREE-STREAM DEFINITION ------------------%
%
% Free-stream density (1.2886 Kg/m^3 (air), 998.2 Kg/m^3 (water))
FREESTREAM_DENSITY= 1.2886
%
% Free-stream velocity (m/s)
FREESTREAM_VELOCITY= ( 33.3333, 0.00, 0.00 ) % 120 km/h
%
% Free-stream viscosity (1.853E-5 Ns/m^2 (air), 0.798E-3 Ns/m^2 (water))
FREESTREAM_VISCOSITY= 1.853E-5

% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------%
%
% Ratio of specific heats (1.4 (air), only for compressible flows)
GAMMA_VALUE= 1.4
%
% Specific gas constant (287.87 J/kg*K (air), only for compressible flows)
GAS_CONSTANT= 287.87
%
% Laminar Prandtl number (0.72 (air), only for compressible flows)
PRANDTL_LAM= 0.72
%
% Turbulent Prandtl number (0.9 (air), only for compressible flows)
PRANDTL_TURB= 0.9
%
% Value of the Bulk Modulus (1.42E5 N/m^2 (air), 2.2E9 N/m^2 (water),
% only for incompressible flows)
BULK_MODULUS= 1.42E5
%
% Artifical compressibility factor (1.0 by default,
% only for incompressible flows)
ARTCOMP_FACTOR= 1.0

% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation
REF_ORIGIN_MOMENT_X = 0.547
REF_ORIGIN_MOMENT_Y = -0.786
REF_ORIGIN_MOMENT_Z = 0.811
%
% Reference length for pitching, rolling, and yawing non-dimensional moment
REF_LENGTH_MOMENT= 0.205
%
% Reference area for force coefficients (0 implies automatic calculation)
REF_AREA= 0

% ------------------------- UNSTEADY SIMULATION -------------------------------%
%
% Unsteady simulation (NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER, 
%                      DUAL_TIME_STEPPING-2ND_ORDER)
UNSTEADY_SIMULATION= NO
%
% Time Step for dual time stepping simulations (s)
UNST_TIMESTEP= 0.0
%
% Total Physical Time for dual time stepping simulations (s)
UNST_TIME= 50.0
%
% Unsteady Courant-Friedrichs-Lewy number of the finest grid
UNST_CFL_NUMBER= 0.0
%
% Number of internal iterations (dual time method)
UNST_INT_ITER= 200
%
% Integer number of periodic time instances for Time Spectral
TIME_INSTANCES= 1

% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
% Navier-Stokes wall boundary marker(s) (NONE = no marker)
MARKER_ISOTHERMAL= ( car, mirror, mirror_plate, bras )
%
% Farfield boundary marker(s) (NONE = no marker)
MARKER_FAR= ( inlet, bottom, top_4, side+, outlet_2 )
%
% Symmetry boundary marker(s) (NONE = no marker)
MARKER_SYM= ( side- )

% ------------------------ SURFACES IDENTIFICATION ----------------------------%
%
% Marker(s) of the surface to be plotted or designed
MARKER_PLOTTING= ( mirror, mirror_plate, bras )
%
% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated
MARKER_MONITORING= ( mirror, mirror_plate, bras )

% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES
%
% Courant-Friedrichs-Lewy condition of the finest grid
CFL_NUMBER= 5.0
%
% CFL ramp (factor, number of iterations, CFL limit)
CFL_RAMP= ( 1.1, 100, 20.0 )
%
% Runge-Kutta alpha coefficients
RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 )
%
% Number of total iterations
EXT_ITER= 30

% -------------------------- MULTIGRID PARAMETERS -----------------------------%
%
% Multi-Grid Levels (0 = no multi-grid)
MGLEVEL= 2
%
% Multi-Grid Cycle (0 = V cycle, 1 = W Cycle)
MGCYCLE= 0
%
% CFL reduction factor on the coarse levels
MG_CFL_REDUCTION= 0.75
%
% Maximum number of children in the agglomeration stage
MAX_CHILDREN= 250
%
% Maximum length of an agglomerated element (relative to the domain)
MAX_DIMENSION= 0.1
%
% Multigrid pre-smoothing level
MG_PRE_SMOOTH= ( 1, 2, 3, 3 )
%
% Multigrid post-smoothing level
MG_POST_SMOOTH= ( 0, 0, 0, 0 )
%
% Jacobi implicit smoothing of the correction
MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 )
%
% Damping factor for the residual restriction
MG_DAMP_RESTRICTION= 0.5
%
% Damping factor for the correction prolongation
MG_DAMP_PROLONGATION= 0.5

% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
% TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= ROE
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
%
SPATIAL_ORDER_FLOW= 2ND_ORDER
%
% Slope limiter (VENKATAKRISHNAN, MINMOD)
SLOPE_LIMITER_FLOW= VENKATAKRISHNAN
%
% Coefficient for the limiter
LIMITER_COEFF= 0.3
%
% 1st, 2nd and 4th order artificial dissipation coefficients
AD_COEFF_FLOW= ( 0.15, 0.5, 0.02 )
%
% Viscous numerical method (AVG_GRAD, AVG_GRAD_CORRECTED, GALERKIN)
VISC_NUM_METHOD_FLOW= AVG_GRAD_CORRECTED
%
% Source term numerical method (PIECEWISE_CONSTANT)
SOUR_NUM_METHOD_FLOW= PIECEWISE_CONSTANT
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT

% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------%
%
% Convective numerical method (SCALAR_UPWIND)
CONV_NUM_METHOD_TURB= SCALAR_UPWIND
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
SPATIAL_ORDER_TURB= 2ND_ORDER
%
% Slope limiter (VENKATAKRISHNAN, MINMOD)
SLOPE_LIMITER_TURB= VENKATAKRISHNAN
%
% Viscous numerical method (AVG_GRAD, AVG_GRAD_CORRECTED)
VISC_NUM_METHOD_TURB= AVG_GRAD_CORRECTED
%
% Source term numerical method (PIECEWISE_CONSTANT)
SOUR_NUM_METHOD_TURB= PIECEWISE_CONSTANT
%
% Time discretization (EULER_IMPLICIT)
TIME_DISCRE_TURB= EULER_IMPLICIT
%
% Reduction factor of the CFL coefficient in the turbulence problem
CFL_REDUCTION_TURB= 1.0

% --------------------------- PARTITIONING STRATEGY ---------------------------%
%
% Write a paraview file for each partition (NO, YES)
VISUALIZE_PART= NO

% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Convergence criteria (CAUCHY, RESIDUAL)
%
CONV_CRITERIA= RESIDUAL
%
% Residual reduction (order of magnitude with respect to the initial value)
RESIDUAL_REDUCTION= 8
%
% Min value of the residual (log10 of the residual)
RESIDUAL_MINVAL= -10
%
% Start convergence criteria at iteration number
STARTCONV_ITER= 10
%
% Number of elements to apply the criteria
CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CAUCHY_EPS= 1E-6
%
% Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, SENS_GEOMETRY,
% SENS_MACH, DELTA_LIFT, DELTA_DRAG)
CAUCHY_FUNC_FLOW= DRAG
%
% Epsilon for full multigrid method evaluation
FULLMG_CAUCHY_EPS= 1E-4

% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
% Mesh input file
MESH_FILENAME= Retro.su2
%
% Mesh input file format (SU2, CGNS, NETCDF_ASCII)
MESH_FORMAT= SU2
%
% Convert a CGNS mesh to SU2 format (YES, NO)
CGNS_TO_SU2= NO
%
% Mesh output file
MESH_OUT_FILENAME= mesh_out.su2
%
% Restart flow input file
SOLUTION_FLOW_FILENAME= solution_flow.dat
%
% Restart adjoint input file
SOLUTION_ADJ_FILENAME= solution_adj.dat
%
% Output file format (PARAVIEW, TECPLOT, SLT)
OUTPUT_FORMAT= PARAVIEW
%
% Output file convergence history (w/o extension) 
CONV_FILENAME= history
%
% Output file restart flow
RESTART_FLOW_FILENAME= restart_flow.dat
%
% Output file restart adjoint
RESTART_ADJ_FILENAME= restart_adj.dat
%
% Output file linear flow
RESTART_LIN_FILENAME= restart_lin.dat
%
% Output file flow (w/o extension) variables
VOLUME_FLOW_FILENAME= flow
%
% Output file adjoint (w/o extension) variables
VOLUME_ADJ_FILENAME= adjoint
%
% Output file linearized (w/o extension) variables
VOLUME_LIN_FILENAME= linearized
%
% Output objective function gradient (using continuous adjoint)
GRAD_OBJFUNC_FILENAME= of_grad.dat
%
% Output file surface flow coefficient (w/o extension)
SURFACE_FLOW_FILENAME= surface_flow
%
% Output file surface adjoint coefficient (w/o extension)
SURFACE_ADJ_FILENAME= surface_adjoint
%
% Output file surface linear coefficient (w/o extension)
SURFACE_LIN_FILENAME= surface_linear
%
% Writing solution file frequency
WRT_SOL_FREQ= 10
%
% Writing convergence history frequency
WRT_CON_FREQ= 1
%
% Write unsteady data adding headers and prefixes (NO, YES)
WRT_UNSTEADY= NO
Thanks for your answers

Regards

Olivier
brugiere_olivier is offline   Reply With Quote

Old   April 15, 2014, 10:59
Thumbs up
  #2
Senior Member
 
Join Date: Nov 2010
Posts: 139
Rep Power: 16
taxalian is on a distinguished road
Send a message via Skype™ to taxalian
Hi,
Simply replace the Navier-Stokes makers in your config file with the following parameter:

%
% Navier-Stokes wall boundary marker(s) (NONE = no marker)
MARKER_HEATFLUX= ( car, 0.0 )
and so on for the rest of boundary markers.

NOTE: Normally you should find all the updates within the config_template.cfg file supplied with each release of SU2.

Hope this helps
Taxalian.

Quote:
Originally Posted by brugiere_olivier View Post
hi all,

I'm new user of SU2. I would like to make tests of the adjoint solver on a rear-view mirror to reduce the drag coefficient.
In SU2 v2.0, I can make a simulation without the adjoint part. I've upgraded my version of SU2 and I can't reproduce this case now. I don't find how to have wall without temperature like with MARKER_NS. To the car and the rear-view mirror, I've four boundary conditions (car, arm, mirror and mirror_plate).

If some body can give me some advices, I give my configuration file.

Code:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                              %
% Stanford University unstructured (SU2) configuration file                    %
% Case description: Turbulent flow over flat plate with zero pressure gradient %
% Author: Thomas D. Economon                                                   %
% Institution: Stanford University                                             %
% Date: 2011.11.10                                                             %
% File Version 1.0.12 January 5th, 2012                                        %
%                                                                              %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------%
%
% Physical governing equations (EULER, NAVIER_STOKES,
%                               TNE2_EULER, TNE2_NAVIER_STOKES,
%                               WAVE_EQUATION, HEAT_EQUATION, LINEAR_ELASTICITY,
%                               POISSON_EQUATION)
PHYSICAL_PROBLEM= NAVIER_STOKES
%
% Specify turbulence model (NONE, SA, SST)
KIND_TURB_MODEL= SA
%
% Mathematical problem (DIRECT, ADJOINT, LINEARIZED)
MATH_PROBLEM= DIRECT
%
% Restart solution (NO, YES)
RESTART_SOL= NO
%
% Regime type (COMPRESSIBLE, INCOMPRESSIBLE, FREESURFACE)
REGIME_TYPE= INCOMPRESSIBLE
%
% Gravity force, only incompressible (NO, YES)
GRAVITY_FORCE= NO
%
% Axisymmetric simulation, only compressible (NO, YES)
AXISYMMETRIC= NO
%
% Perform a low fidelity simulation (NO, YES)
LOW_FIDELITY_SIMULATION= NO

% -------------------- INCOMPRESSIBLE FREE-STREAM DEFINITION ------------------%
%
% Free-stream density (1.2886 Kg/m^3 (air), 998.2 Kg/m^3 (water))
FREESTREAM_DENSITY= 1.2886
%
% Free-stream velocity (m/s)
FREESTREAM_VELOCITY= ( 33.3333, 0.00, 0.00 ) % 120 km/h
%
% Free-stream viscosity (1.853E-5 Ns/m^2 (air), 0.798E-3 Ns/m^2 (water))
FREESTREAM_VISCOSITY= 1.853E-5

% -------------- COMPRESSIBLE AND INCOMPRESSIBLE FLUID CONSTANTS --------------%
%
% Ratio of specific heats (1.4 (air), only for compressible flows)
GAMMA_VALUE= 1.4
%
% Specific gas constant (287.87 J/kg*K (air), only for compressible flows)
GAS_CONSTANT= 287.87
%
% Laminar Prandtl number (0.72 (air), only for compressible flows)
PRANDTL_LAM= 0.72
%
% Turbulent Prandtl number (0.9 (air), only for compressible flows)
PRANDTL_TURB= 0.9
%
% Value of the Bulk Modulus (1.42E5 N/m^2 (air), 2.2E9 N/m^2 (water),
% only for incompressible flows)
BULK_MODULUS= 1.42E5
%
% Artifical compressibility factor (1.0 by default,
% only for incompressible flows)
ARTCOMP_FACTOR= 1.0

% ---------------------- REFERENCE VALUE DEFINITION ---------------------------%
%
% Reference origin for moment computation
REF_ORIGIN_MOMENT_X = 0.547
REF_ORIGIN_MOMENT_Y = -0.786
REF_ORIGIN_MOMENT_Z = 0.811
%
% Reference length for pitching, rolling, and yawing non-dimensional moment
REF_LENGTH_MOMENT= 0.205
%
% Reference area for force coefficients (0 implies automatic calculation)
REF_AREA= 0

% ------------------------- UNSTEADY SIMULATION -------------------------------%
%
% Unsteady simulation (NO, TIME_STEPPING, DUAL_TIME_STEPPING-1ST_ORDER, 
%                      DUAL_TIME_STEPPING-2ND_ORDER)
UNSTEADY_SIMULATION= NO
%
% Time Step for dual time stepping simulations (s)
UNST_TIMESTEP= 0.0
%
% Total Physical Time for dual time stepping simulations (s)
UNST_TIME= 50.0
%
% Unsteady Courant-Friedrichs-Lewy number of the finest grid
UNST_CFL_NUMBER= 0.0
%
% Number of internal iterations (dual time method)
UNST_INT_ITER= 200
%
% Integer number of periodic time instances for Time Spectral
TIME_INSTANCES= 1

% -------------------- BOUNDARY CONDITION DEFINITION --------------------------%
%
% Navier-Stokes wall boundary marker(s) (NONE = no marker)
MARKER_ISOTHERMAL= ( car, mirror, mirror_plate, bras )
%
% Farfield boundary marker(s) (NONE = no marker)
MARKER_FAR= ( inlet, bottom, top_4, side+, outlet_2 )
%
% Symmetry boundary marker(s) (NONE = no marker)
MARKER_SYM= ( side- )

% ------------------------ SURFACES IDENTIFICATION ----------------------------%
%
% Marker(s) of the surface to be plotted or designed
MARKER_PLOTTING= ( mirror, mirror_plate, bras )
%
% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated
MARKER_MONITORING= ( mirror, mirror_plate, bras )

% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------%
%
% Numerical method for spatial gradients (GREEN_GAUSS, WEIGHTED_LEAST_SQUARES)
NUM_METHOD_GRAD= WEIGHTED_LEAST_SQUARES
%
% Courant-Friedrichs-Lewy condition of the finest grid
CFL_NUMBER= 5.0
%
% CFL ramp (factor, number of iterations, CFL limit)
CFL_RAMP= ( 1.1, 100, 20.0 )
%
% Runge-Kutta alpha coefficients
RK_ALPHA_COEFF= ( 0.66667, 0.66667, 1.000000 )
%
% Number of total iterations
EXT_ITER= 30

% -------------------------- MULTIGRID PARAMETERS -----------------------------%
%
% Multi-Grid Levels (0 = no multi-grid)
MGLEVEL= 2
%
% Multi-Grid Cycle (0 = V cycle, 1 = W Cycle)
MGCYCLE= 0
%
% CFL reduction factor on the coarse levels
MG_CFL_REDUCTION= 0.75
%
% Maximum number of children in the agglomeration stage
MAX_CHILDREN= 250
%
% Maximum length of an agglomerated element (relative to the domain)
MAX_DIMENSION= 0.1
%
% Multigrid pre-smoothing level
MG_PRE_SMOOTH= ( 1, 2, 3, 3 )
%
% Multigrid post-smoothing level
MG_POST_SMOOTH= ( 0, 0, 0, 0 )
%
% Jacobi implicit smoothing of the correction
MG_CORRECTION_SMOOTH= ( 0, 0, 0, 0 )
%
% Damping factor for the residual restriction
MG_DAMP_RESTRICTION= 0.5
%
% Damping factor for the correction prolongation
MG_DAMP_PROLONGATION= 0.5

% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------%
%
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, HLLC,
% TURKEL_PREC, MSW)
CONV_NUM_METHOD_FLOW= ROE
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
%
SPATIAL_ORDER_FLOW= 2ND_ORDER
%
% Slope limiter (VENKATAKRISHNAN, MINMOD)
SLOPE_LIMITER_FLOW= VENKATAKRISHNAN
%
% Coefficient for the limiter
LIMITER_COEFF= 0.3
%
% 1st, 2nd and 4th order artificial dissipation coefficients
AD_COEFF_FLOW= ( 0.15, 0.5, 0.02 )
%
% Viscous numerical method (AVG_GRAD, AVG_GRAD_CORRECTED, GALERKIN)
VISC_NUM_METHOD_FLOW= AVG_GRAD_CORRECTED
%
% Source term numerical method (PIECEWISE_CONSTANT)
SOUR_NUM_METHOD_FLOW= PIECEWISE_CONSTANT
%
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT)
TIME_DISCRE_FLOW= EULER_IMPLICIT

% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------%
%
% Convective numerical method (SCALAR_UPWIND)
CONV_NUM_METHOD_TURB= SCALAR_UPWIND
%
% Spatial numerical order integration (1ST_ORDER, 2ND_ORDER, 2ND_ORDER_LIMITER)
SPATIAL_ORDER_TURB= 2ND_ORDER
%
% Slope limiter (VENKATAKRISHNAN, MINMOD)
SLOPE_LIMITER_TURB= VENKATAKRISHNAN
%
% Viscous numerical method (AVG_GRAD, AVG_GRAD_CORRECTED)
VISC_NUM_METHOD_TURB= AVG_GRAD_CORRECTED
%
% Source term numerical method (PIECEWISE_CONSTANT)
SOUR_NUM_METHOD_TURB= PIECEWISE_CONSTANT
%
% Time discretization (EULER_IMPLICIT)
TIME_DISCRE_TURB= EULER_IMPLICIT
%
% Reduction factor of the CFL coefficient in the turbulence problem
CFL_REDUCTION_TURB= 1.0

% --------------------------- PARTITIONING STRATEGY ---------------------------%
%
% Write a paraview file for each partition (NO, YES)
VISUALIZE_PART= NO

% --------------------------- CONVERGENCE PARAMETERS --------------------------%
%
% Convergence criteria (CAUCHY, RESIDUAL)
%
CONV_CRITERIA= RESIDUAL
%
% Residual reduction (order of magnitude with respect to the initial value)
RESIDUAL_REDUCTION= 8
%
% Min value of the residual (log10 of the residual)
RESIDUAL_MINVAL= -10
%
% Start convergence criteria at iteration number
STARTCONV_ITER= 10
%
% Number of elements to apply the criteria
CAUCHY_ELEMS= 100
%
% Epsilon to control the series convergence
CAUCHY_EPS= 1E-6
%
% Function to apply the criteria (LIFT, DRAG, NEARFIELD_PRESS, SENS_GEOMETRY,
% SENS_MACH, DELTA_LIFT, DELTA_DRAG)
CAUCHY_FUNC_FLOW= DRAG
%
% Epsilon for full multigrid method evaluation
FULLMG_CAUCHY_EPS= 1E-4

% ------------------------- INPUT/OUTPUT INFORMATION --------------------------%
%
% Mesh input file
MESH_FILENAME= Retro.su2
%
% Mesh input file format (SU2, CGNS, NETCDF_ASCII)
MESH_FORMAT= SU2
%
% Convert a CGNS mesh to SU2 format (YES, NO)
CGNS_TO_SU2= NO
%
% Mesh output file
MESH_OUT_FILENAME= mesh_out.su2
%
% Restart flow input file
SOLUTION_FLOW_FILENAME= solution_flow.dat
%
% Restart adjoint input file
SOLUTION_ADJ_FILENAME= solution_adj.dat
%
% Output file format (PARAVIEW, TECPLOT, SLT)
OUTPUT_FORMAT= PARAVIEW
%
% Output file convergence history (w/o extension) 
CONV_FILENAME= history
%
% Output file restart flow
RESTART_FLOW_FILENAME= restart_flow.dat
%
% Output file restart adjoint
RESTART_ADJ_FILENAME= restart_adj.dat
%
% Output file linear flow
RESTART_LIN_FILENAME= restart_lin.dat
%
% Output file flow (w/o extension) variables
VOLUME_FLOW_FILENAME= flow
%
% Output file adjoint (w/o extension) variables
VOLUME_ADJ_FILENAME= adjoint
%
% Output file linearized (w/o extension) variables
VOLUME_LIN_FILENAME= linearized
%
% Output objective function gradient (using continuous adjoint)
GRAD_OBJFUNC_FILENAME= of_grad.dat
%
% Output file surface flow coefficient (w/o extension)
SURFACE_FLOW_FILENAME= surface_flow
%
% Output file surface adjoint coefficient (w/o extension)
SURFACE_ADJ_FILENAME= surface_adjoint
%
% Output file surface linear coefficient (w/o extension)
SURFACE_LIN_FILENAME= surface_linear
%
% Writing solution file frequency
WRT_SOL_FREQ= 10
%
% Writing convergence history frequency
WRT_CON_FREQ= 1
%
% Write unsteady data adding headers and prefixes (NO, YES)
WRT_UNSTEADY= NO
Thanks for your answers

Regards

Olivier
taxalian is offline   Reply With Quote

Old   April 15, 2014, 11:12
Default
  #3
Member
 
Brugiere Olivier
Join Date: Mar 2009
Posts: 34
Rep Power: 17
brugiere_olivier is on a distinguished road
Hi,

Thanks for your answer. I've find my mistake
Regards

Olivier
brugiere_olivier is offline   Reply With Quote

Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Requiring some help regarding tornado simulation amarjogot Main CFD Forum 0 June 20, 2013 13:26
Simulation of a complex wing in solidworks flow simulation niels1900 FloEFD, FloWorks & FloTHERM 6 April 20, 2011 11:44
Need help on simulation of incompressible flow in an orifice meter mep10jl FLUENT 0 November 18, 2010 20:25
GUI crash and simulation engine still running RPJones FLOW-3D 2 November 9, 2010 09:18
FSI TWO-WAY SIMULATION Smagmon CFX 1 March 6, 2009 14:24


All times are GMT -4. The time now is 12:53.