CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Software User Forums > OpenFOAM

two Phase column simulation

Register Blogs Community New Posts Updated Threads Search

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   May 10, 2010, 04:54
Default two Phase column simulation
  #1
New Member
 
Benjamin
Join Date: Jan 2010
Posts: 9
Rep Power: 16
chemeng is on a distinguished road
Hello, I am trying to simulate a two phase (air-water) column. Initially, there is water in the column until the level of 450 mm and the rest is air. Only air is injecting in the column through the bottom of it. My overall domain is (0 0 0) (200 700 50). I have used setFields to set the initial water level as follows:
defaultFieldValues
(
volScalarFieldValue alpha 1
);


regions
(
boxToCell
{
box (0 0 0) (200 450 50);
fieldValues
(
volScalarFieldValue alpha 0
);
}
);

I attach here the 0, constant and system directories. This case is similar to the bubble plume case in Henrik Rusche tesis. I have used twoPhaseEulerFoam to solve it, but always the solver fails. These are the last steps of my simulation:
Time = 0.791

DILUPBiCG: Solving for alpha, Initial residual = 2.63349e-07, Final residual = 1.86978e-16, No Iterations 1
Dispersed phase volume fraction = 0.349989 Min(alpha) = -2.24462e-10 Max(alpha) = 1
DILUPBiCG: Solving for alpha, Initial residual = 4.74634e-11, Final residual = 4.74634e-11, No Iterations 0
Dispersed phase volume fraction = 0.349989 Min(alpha) = -2.24462e-10 Max(alpha) = 1
GAMG: Solving for p, Initial residual = 0.986187, Final residual = 5.73366e-09, No Iterations 17
time step continuity errors : sum local = 1.40345e-05, global = 1.79727e-07, cumulative = 2.10044e-05
GAMG: Solving for p, Initial residual = 1.22598e-05, Final residual = 3.53858e-09, No Iterations 8
time step continuity errors : sum local = 1.77695e-08, global = 1.40128e-08, cumulative = 2.10184e-05
DILUPBiCG: Solving for epsilon, Initial residual = 0.56183, Final residual = 5.35533e-06, No Iterations 2
DILUPBiCG: Solving for k, Initial residual = 1, Final residual = 4.04759e-06, No Iterations 19
ExecutionTime = 246.88 s ClockTime = 276 s

Courant Number mean: 2.94236e-06 max: 9.39065e-05
Max Ur Courant Number = 0.000103406
Calculating averages

Time = 0.792

DILUPBiCG: Solving for alpha, Initial residual = 2.07051e-07, Final residual = 1.18426e-16, No Iterations 1
Dispersed phase volume fraction = 0.349989 Min(alpha) = -2.24444e-10 Max(alpha) = 1
DILUPBiCG: Solving for alpha, Initial residual = 4.87669e-12, Final residual = 4.87669e-12, No Iterations 0
Dispersed phase volume fraction = 0.349989 Min(alpha) = -2.24444e-10 Max(alpha) = 1
GAMG: Solving for p, Initial residual = 0.99911, Final residual = 1.62335e-09, No Iterations 16
time step continuity errors : sum local = 4.85304e-07, global = -6.78739e-08, cumulative = 2.09505e-05
GAMG: Solving for p, Initial residual = 1.22245e-07, Final residual = 4.05677e-09, No Iterations 3
time step continuity errors : sum local = 4.3112e-08, global = 2.02119e-08, cumulative = 2.09707e-05
DILUPBiCG: Solving for epsilon, Initial residual = 0.387714, Final residual = 9.80831e-06, No Iterations 8
DILUPBiCG: Solving for k, Initial residual = 1, Final residual = 7.55652e-06, No Iterations 9
ExecutionTime = 247.3 s ClockTime = 276 s

Courant Number mean: 2.86588e-06 max: 8.43784e-05
Max Ur Courant Number = 8.57354e-05
Calculating averages

Time = 0.793

DILUPBiCG: Solving for alpha, Initial residual = 2.24368e-07, Final residual = 1.04551e-16, No Iterations 1
Dispersed phase volume fraction = 0.349989 Min(alpha) = -2.24425e-10 Max(alpha) = 1
DILUPBiCG: Solving for alpha, Initial residual = 8.27431e-12, Final residual = 8.27431e-12, No Iterations 0
Dispersed phase volume fraction = 0.349989 Min(alpha) = -2.24425e-10 Max(alpha) = 1
GAMG: Solving for p, Initial residual = 0.995351, Final residual = 3.11721e-09, No Iterations 14
time step continuity errors : sum local = 3.67949e-06, global = 1.30844e-06, cumulative = 2.22792e-05
GAMG: Solving for p, Initial residual = 2.60418e-14, Final residual = 2.60418e-14, No Iterations 0
time step continuity errors : sum local = 4.57825e-06, global = 1.30906e-06, cumulative = 2.35882e-05
DILUPBiCG: Solving for epsilon, Initial residual = 0.872664, Final residual = 3.49504e-06, No Iterations 11
DILUPBiCG: Solving for k, Initial residual = 1, Final residual = 6.70844e-06, No Iterations 3
ExecutionTime = 247.69 s ClockTime = 277 s

Courant Number mean: 7.98444e-06 max: 0.000214576
Max Ur Courant Number = 0.000246573
Calculating averages

Time = 0.794

DILUPBiCG: Solving for alpha, Initial residual = 5.0522e-06, Final residual = 2.6061e-15, No Iterations 1
Dispersed phase volume fraction = 0.349988 Min(alpha) = -2.24409e-10 Max(alpha) = 1.00007
DILUPBiCG: Solving for alpha, Initial residual = 3.6218e-10, Final residual = 2.19924e-19, No Iterations 1
Dispersed phase volume fraction = 0.349988 Min(alpha) = -2.24409e-10 Max(alpha) = 1.00007
GAMG: Solving for p, Initial residual = 0.99362, Final residual = 2.91436e-09, No Iterations 19
time step continuity errors : sum local = 79.1722, global = -45.1975, cumulative = -45.1975
GAMG: Solving for p, Initial residual = 8.58661e-06, Final residual = 8.05537e-09, No Iterations 10
time step continuity errors : sum local = 0.0754832, global = 0.0614776, cumulative = -45.136
DILUPBiCG: Solving for epsilon, Initial residual = 0.333104, Final residual = 4.24405e-06, No Iterations 285
DILUPBiCG: Solving for k, Initial residual = 0.98362, Final residual = 1.79691, No Iterations 1001
ExecutionTime = 250.35 s ClockTime = 279 s

Courant Number mean: 2.9945 max: 496.215
Max Ur Courant Number = 712.315
Calculating averages

Time = 0.795

DILUPBiCG: Solving for alpha, Initial residual = 0.305668, Final residual = 8.34833e-11, No Iterations 40
Dispersed phase volume fraction = 0.308743 Min(alpha) = -10.9055 Max(alpha) = 19.6875
DILUPBiCG: Solving for alpha, Initial residual = 0.950365, Final residual = 6.24853e-11, No Iterations 124
Dispersed phase volume fraction = 0.148458 Min(alpha) = -29.0766 Max(alpha) = 17.1806

Any help is appreciated. Thanks in advance.
Attached Files
File Type: zip constant.zip (2.8 KB, 23 views)
File Type: zip 0.zip (3.4 KB, 22 views)
File Type: zip system.zip (3.4 KB, 23 views)
chemeng is offline   Reply With Quote

Old   June 18, 2010, 05:00
Default
  #2
Senior Member
 
Gijsbert Wierink
Join Date: Mar 2009
Posts: 383
Rep Power: 18
gwierink is on a distinguished road
Hi Benjamin,

Sorry for this late reply, perhaps you have solved it already, but if not I'll try to help.

I downloaded your case files, but can't find the actual mesh. Is it just a rectangular column? If so, blockMesh will work fine.


Quote:
defaultFieldValues
(
volScalarFieldValue alpha 1
);


regions
(
boxToCell
{
box (0 0 0) (200 450 50);
fieldValues
(
volScalarFieldValue alpha 0
);
}
);
Here you set a "chunk" of water above a layer of air, which will the collapse, am I right? Do you really want that? I mean, isn't it better to start a bubble column from a column of water and then blow in air?

Have you tried to simply modify the bubbleCollumn tutorials for twoPhaseEulerFoam?
__________________
Regards, Gijs
gwierink is offline   Reply With Quote

Old   August 18, 2010, 13:41
Default two Phase column simulation
  #3
New Member
 
Renato Soccol
Join Date: Aug 2010
Location: Blumenau, Brazil
Posts: 6
Rep Power: 16
soccol is on a distinguished road
Benjamin,

I had the same problem then you, but my gas-liquid system is little different, is a cylindrical column, this problem was solved.

so...apply a relaxation factor to the firstly seconds in your simulation on the k and epsilon variable, about 0.9 for both, on the /system/fvsolution like this.

sorry about my English.


/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 1.6 |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "system";
object fvSolution;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

solvers
{
p
{
solver GAMG;
tolerance 1e-08;
relTol 0;
smoother DIC;
nPreSweeps 0;
nPostSweeps 2;
nFinestSweeps 2;
cacheAgglomeration true;
nCellsInCoarsestLevel 10;
agglomerator faceAreaPair;
mergeLevels 1;
}

Ua
{
solver PBiCG;
preconditioner DILU;
tolerance 1e-05;
relTol 0;
}

Ub
{
solver PBiCG;
preconditioner DILU;
tolerance 1e-05;
relTol 0;
}

alpha
{
solver PBiCG;
preconditioner DILU;
tolerance 1e-10;
relTol 0;
}

beta
{
solver PBiCG;
preconditioner DILU;
tolerance 1e-10;
relTol 0;
}

Theta
{
solver PBiCG;
preconditioner DILU;
tolerance 1e-05;
relTol 0;
}

k
{
solver PBiCG;
preconditioner DILU;
tolerance 1e-05;
relTol 0;
}

epsilon
{
solver PBiCG;
preconditioner DILU;
tolerance 1e-05;
relTol 0;
}
}

PISO
{
nCorrectors 3;
nNonOrthogonalCorrectors 0;
nAlphaCorr 3;
correctAlpha no;
pRefCell 0;
pRefValue 0;
}

relaxationFactors
{
Ua 1;
Ub 1;
alpha 1;
beta 1;
Theta 1;
k 0.9;
epsilon 0.9;
}
// ************************************************** *********************** //
soccol is offline   Reply With Quote

Old   August 18, 2010, 13:53
Default setFields
  #4
New Member
 
Renato Soccol
Join Date: Aug 2010
Location: Blumenau, Brazil
Posts: 6
Rep Power: 16
soccol is on a distinguished road
their alpha initial conditions are correct. Alpha 0 means that there is water up to 450 and after that, alpha 1, only air is present on the column.
soccol is offline   Reply With Quote

Reply

Tags
twophaseeulerfoam


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
simulation two phase closed thermosyphon mohammad reza FLUENT 3 November 1, 2016 04:58
Three phase simulation of airlift reactor Idtisak CFX 0 February 22, 2008 11:05
multi phase simulation Thandavan CFX 4 June 29, 2006 00:29
Two Phase simulation Mansour Al-Harbi FLUENT 7 June 11, 2004 09:54
time and phase averaging simulation data prem FLUENT 0 December 28, 2003 23:15


All times are GMT -4. The time now is 09:43.