|
[Sponsors] |
how to remove the sharp angles of a mesh made with snappyHexMesh |
|
LinkBack | Thread Tools | Search this Thread | Display Modes |
January 17, 2020, 11:02 |
how to remove the sharp angles of a mesh made with snappyHexMesh
|
#1 |
New Member
Join Date: Sep 2019
Posts: 18
Rep Power: 7 |
Hi all,
I have made a mesh of a cylinder with snappyHexMesh satisfactorily. However I have at the intersection of the sides of the cylinder with the inlet and outlet some cells that are not like their predecessors (see image) and, ideally, I am looking for a mesh whose cross section is constant along the z axis. Otherwise I get some non-physical noise during simulation. How can I eliminate those sharp angles (in red) and make them orthogonal so that they follow a perfect line? changing resolveFeatureAngle? sharpAngles.png Code:
/*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 2.4.0 | | \\ / A nd | Web: www.OpenFOAM.org | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class dictionary; object snappyHexMeshDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // castellatedMesh true; snap true; addLayers true; geometry { cylinder { type triSurfaceMesh; file "cylinder.stl"; regions { sidesPatch {name sidesPatch;} inletPatch {name inletPatch;} outletPatch {name outletPatch;} } } }; castellatedMeshControls { maxLocalCells 100000; maxGlobalCells 2000000; minRefinementCells 10; maxLoadUnbalance 0.10; nCellsBetweenLevels 10; features ( { file "cylinder.eMesh"; level 0; } ); refinementSurfaces { cylinder { // Surface-wise min and max refinement level level (2 2); regions { sidesPatch {level (1 1); } inletPatch {level (0 0); } outletPatch {level (0 0);} } // Optional specification of patch type (default is wall). No // constraint types (cyclic, symmetry) etc. are allowed. //patchInfo //{ // type wall; // inGroups (motorBikeGroup); //} } } resolveFeatureAngle 30; // Region-wise refinement // ~~~~~~~~~~~~~~~~~~~~~~ // Specifies refinement level for cells in relation to a surface. One of // three modes // - distance. 'levels' specifies per distance to the surface the // wanted refinement level. The distances need to be specified in // descending order. // - inside. 'levels' is only one entry and only the level is used. All // cells inside the surface get refined up to the level. The surface // needs to be closed for this to be possible. // - outside. Same but cells outside. refinementRegions { } // Mesh selection // ~~~~~~~~~~~~~~ // After refinement patches get added for all refinementSurfaces and // all cells intersecting the surfaces get put into these patches. The // section reachable from the locationInMesh is kept. // NOTE: This point should never be on a face, always inside a cell, even // after refinement. locationInMesh (0.66 0.66 3); // Whether any faceZones (as specified in the refinementSurfaces) // are only on the boundary of corresponding cellZones or also allow // free-standing zone faces. Not used if there are no faceZones. allowFreeStandingZoneFaces true; } // Settings for the snapping. snapControls { //- Number of patch smoothing iterations before finding correspondence // to surface nSmoothPatch 3; //- Relative distance for points to be attracted by surface feature point // or edge. True distance is this factor times local // maximum edge length. tolerance 2.0; //- Number of mesh displacement relaxation iterations. nSolveIter 100; //- Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 5; // Feature snapping //- Number of feature edge snapping iterations. // Leave out altogether to disable. nFeatureSnapIter 10; //- Detect (geometric only) features by sampling the surface // (default=false). implicitFeatureSnap false; //- Use castellatedMeshControls::features (default = true) explicitFeatureSnap true; //- Detect points on multiple surfaces (only for explicitFeatureSnap) multiRegionFeatureSnap false; } // Settings for the layer addition. addLayersControls { // Are the thickness parameters below relative to the undistorted // size of the refined cell outside layer (true) or absolute sizes (false). relativeSizes true; // Per final patch (so not geometry!) the layer information layers { sidesPatch { nSurfaceLayers 10; } } // Expansion factor for layer mesh expansionRatio 1.1; // Wanted thickness of final added cell layer. If multiple layers // is the thickness of the layer furthest away from the wall. // Relative to undistorted size of cell outside layer. // See relativeSizes parameter. finalLayerThickness 1; // Minimum thickness of cell layer. If for any reason layer // cannot be above minThickness do not add layer. // Relative to undistorted size of cell outside layer. minThickness 0.1; // If points get not extruded do nGrow layers of connected faces that are // also not grown. This helps convergence of the layer addition process // close to features. // Note: changed(corrected) w.r.t 17x! (didn't do anything in 17x) nGrow 0; // Advanced settings // When not to extrude surface. 0 is flat surface, 90 is when two faces // are perpendicular featureAngle 60; // At non-patched sidesPatch allow mesh to slip if extrusion direction makes // angle larger than slipFeatureAngle. slipFeatureAngle 30; // Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 3; // Number of smoothing iterations of surface normals nSmoothSurfaceNormals 1; // Number of smoothing iterations of interior mesh movement direction nSmoothNormals 3; // Smooth layer thickness over surface patches nSmoothThickness 10; // Stop layer growth on highly warped cells maxFaceThicknessRatio 0.5; // Reduce layer growth where ratio thickness to medial // distance is large maxThicknessToMedialRatio 0.3; // Angle used to pick up medial axis points // Note: changed(corrected) w.r.t 17x! 90 degrees corresponds to 130 in 17x. minMedianAxisAngle 90; // Create buffer region for new layer terminations nBufferCellsNoExtrude 0; // Overall max number of layer addition iterations. The mesher will exit // if it reaches this number of iterations; possibly with an illegal // mesh. nLayerIter 50; } // Generic mesh quality settings. At any undoable phase these determine // where to undo. meshQualityControls { #include "meshQualityDict" // Advanced //- Number of error distribution iterations nSmoothScale 4; //- amount to scale back displacement at error points errorReduction 0.75; } // Advanced // Write flags writeFlags ( scalarLevels layerSets layerFields // write volScalarField for layer coverage ); // Merge tolerance. Is fraction of overall bounding box of initial mesh. // Note: the write tolerance needs to be higher than this. mergeTolerance 1e-6; // ************************************************************************* // |
|
June 30, 2020, 10:59 |
|
#2 |
New Member
Mehmet
Join Date: May 2020
Posts: 1
Rep Power: 0 |
Hi, why don't you generate you cylinder using BM ? I did something similar using BM and don't get any sharp angle
|
|
Tags |
sharp angles, snapphhexmesh |
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
decomposePar problem: Cell 0contains face labels out of range | vaina74 | OpenFOAM Pre-Processing | 37 | July 20, 2020 06:38 |
Problem of sharp interface in mesh while using snappyHexMesh (SHM) | chandra shekhar pant | OpenFOAM | 17 | November 29, 2019 07:20 |
[snappyHexMesh] snappyHexMesh does not create any mesh except one for the reference cell | Arman_N | OpenFOAM Meshing & Mesh Conversion | 1 | May 20, 2019 18:16 |
[snappyHexMesh] SnappyHexMesh for internal Flow | vishwa | OpenFOAM Meshing & Mesh Conversion | 24 | June 27, 2016 09:54 |
[snappyHexMesh] snappyHexMesh - geometry does not appear in Mesh | czhongrong | OpenFOAM Meshing & Mesh Conversion | 1 | January 20, 2016 06:26 |