|
[Sponsors] |
6DOF formulation help in OF - body or inertial reference frame? |
|
LinkBack | Thread Tools | Search this Thread | Display Modes |
May 18, 2022, 22:46 |
6DOF formulation help in OF - body or inertial reference frame?
|
#1 |
Senior Member
TWB
Join Date: Mar 2009
Posts: 414
Rep Power: 19 |
Hi,
I'm trying to understand how OF does its 6DOF calculation. In most aircraft 6DOF which uses the equation of motion, they use the body fixed coordinate sys, so the axes changes direction together with the body. In OF, the forces and moments calculated are fixed in the inertial reference frame, so the axes do not change direction. In this case, are the 6DOF eqn of motions in OF different from the aircraft 6DOF? For e.g. Fx = m(u_dot + q*w - r*v) where u_dot = acc along x dir q = angular vel in pitch w = vel in z dir r = ang. vel in yaw v = vel in y dir The additional q*w and r*v terms are due to the body fixed frame. So in OF, do these additional terms exist? Since OF uses inertial frame. Hope someone can clarify it. |
|
May 29, 2022, 08:35 |
|
#2 |
Member
Saleh Abuhanieh
Join Date: Nov 2017
Posts: 83
Rep Power: 9 |
Hi,
As far I remember, in OpenFOAM code (and in many literature), the linear displacements are found using the inertial frame. However, for the angular displacements, it uses the body-fixed frame. Regards, Saleh |
|
May 29, 2022, 21:57 |
|
#3 |
Senior Member
TWB
Join Date: Mar 2009
Posts: 414
Rep Power: 19 |
Thanks Saleh.
So the additional q*w and r*v terms are not included in the calculation, is that so? I also looked into the source code: Code:
void Foam::sixDoFRigidBodyMotion::updateAcceleration ( const vector& fGlobal, const vector& tauGlobal ) { static bool first = true; // Save the previous iteration accelerations for relaxation vector aPrevIter = a(); vector tauPrevIter = tau(); // Calculate new accelerations a() = fGlobal/mass_; tau() = (Q().T() & tauGlobal); applyRestraints(); Also, fGlobal represents forces in the global inertial reference frame. |
|
May 30, 2022, 03:24 |
|
#4 |
Member
Saleh Abuhanieh
Join Date: Nov 2017
Posts: 83
Rep Power: 9 |
Hi,
Yes, the fGlobal includes only the inertial forces. I've noted down the 6DOF code sequence execution in the past, I am writing it hereunder, hope you can find it useful. [dynamicMeshDict] solver sixDoFRigidBodyMotion; //\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\// [sixDoFRigidBodyMotionSolver.C] Foam::sixDoFRigidBodyMotionSolver::sixDoFRigidBody MotionSolver ( const polyMesh& mesh, const IOdictionary& dict ) : displacementMotionSolver(mesh, dict, typeName), motion_ //is a "sixDoFRigidBodyMotion" object; ( coeffDict(), IOobject ( "sixDoFRigidBodyMotionState", mesh.time().timeName(), "uniform", mesh ).typeHeaderOk<IOdictionary>(true) ? IOdictionary ( IOobject ( "sixDoFRigidBodyMotionState", mesh.time().timeName(), "uniform", mesh, IOobject::READ_IF_PRESENT, IOobject::NO_WRITE, false ) ) : coeffDict(), mesh.time() ), patches_(coeffDict().get<wordRes>("patches")), .. void Foam::sixDoFRigidBodyMotionSolver::solve() { .. functionObjects::forces f("forces", db(), forcesDict); f.calcForcesMoment(); motion_.update ( firstIter, ramp*(f.forceEff() + motion_.mass()*g.value()), ramp *( f.momentEff() + motion_.mass()*(motion_.momentArm() ^ g.value()) ), t.deltaTValue(), t.deltaT0Value() ); .. } //\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\// [sixDoFRigidBodyMotion.C] void Foam::sixDoFRigidBodyMotion::update ( bool firstIter, const vector& fGlobal, const vector& tauGlobal, scalar deltaT, scalar deltaT0 ) { if (Pstream::master()) { solver_->solve(firstIter, fGlobal, tauGlobal, deltaT, deltaT0); //integrator, e.g, Newmark if (report_) { status(); } } Pstream::scatter(motionState_); } //\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\// [Newmark.C] void Foam::sixDoFSolvers::Newmark::solve ( bool firstIter, const vector& fGlobal, const vector& tauGlobal, scalar deltaT, scalar deltaT0 ) { // Update the linear acceleration and torque updateAcceleration(fGlobal, tauGlobal); // Correct linear velocity v() = tConstraints() & (v0() + aDamp()*deltaT*(gamma_*a() + (1 - gamma_)*a0())); // Correct angular momentum pi() = rConstraints() & (pi0() + aDamp()*deltaT*(gamma_*tau() + (1 - gamma_)*tau0())); // Correct position centreOfRotation() = centreOfRotation0() + ( tConstraints() & ( deltaT*v0() + aDamp()*sqr(deltaT)*(beta_*a() + (0.5 - beta_)*a0()) ) ); // Correct orientation vector piDeltaT = rConstraints() & ( deltaT*pi0() + aDamp()*sqr(deltaT)*(beta_*tau() + (0.5 - beta_)*tau0()) ); Tuple2<tensor, vector> Qpi = rotate(Q0(), piDeltaT, 1); Q() = Qpi.first(); //update the orientation tensor } //\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\// [sixDoFSolverI.H] inline void Foam::sixDoFSolver::updateAcceleration ( const vector& fGlobal, const vector& tauGlobal ) { body_.updateAcceleration(fGlobal, tauGlobal); } //\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\// [sixDoFRigidBodyMotion.C] void Foam::sixDoFRigidBodyMotion::updateAcceleration ( const vector& fGlobal, const vector& tauGlobal ) { static bool first = true; // Save the previous iteration accelerations for relaxation vector aPrevIter = a(); vector tauPrevIter = tau(); // Calculate new accelerations a() = fGlobal/mass_; tau() = (Q().T() & tauGlobal); applyRestraints(); // Relax accelerations on all but first iteration if (!first) { a() = aRelax_*a() + (1 - aRelax_)*aPrevIter; tau() = aRelax_*tau() + (1 - aRelax_)*tauPrevIter; } else { first = false; } } //\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\//\\// [sixDoFRigidBodyMotionI.H] inline Foam::Tuple2<Foam::tensor, Foam::vector> Foam::sixDoFRigidBodyMotion::rotate ( const tensor& Q0, const vector& pi0, const scalar deltaT ) const { Tuple2<tensor, vector> Qpi(Q0, pi0); tensor& Q = Qpi.first(); vector& pi = Qpi.second(); tensor R = rotationTensorX(0.5*deltaT*pi.x()/momentOfInertia_.xx()); pi = pi & R; Q = Q & R; R = rotationTensorY(0.5*deltaT*pi.y()/momentOfInertia_.yy()); pi = pi & R; Q = Q & R; R = rotationTensorZ(deltaT*pi.z()/momentOfInertia_.zz()); pi = pi & R; Q = Q & R; R = rotationTensorY(0.5*deltaT*pi.y()/momentOfInertia_.yy()); pi = pi & R; Q = Q & R; R = rotationTensorX(0.5*deltaT*pi.x()/momentOfInertia_.xx()); pi = pi & R; Q = Q & R; return Qpi; } |
|
June 5, 2022, 22:33 |
|
#5 |
Senior Member
TWB
Join Date: Mar 2009
Posts: 414
Rep Power: 19 |
Hi Saleh,
Thanks for the info. This is really useful! The way the 6DOF code sequence works is really confusing. This layout is much easier to understand. |
|
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
Moving reference frame vs body forces | Lucky Luka | STAR-CCM+ | 0 | July 9, 2019 12:47 |
It would be wonderful if a tool for FoamToTecplot is available | luckyluke | OpenFOAM Post-Processing | 165 | November 27, 2012 07:54 |
OpenFOAM on MinGW crosscompiler hosted on Linux | allenzhao | OpenFOAM Installation | 127 | January 30, 2009 20:08 |
Building OpenFoAm on SGI Altix 64bits | anne | OpenFOAM Installation | 8 | June 15, 2006 10:27 |
Windows Installation BugsComments on Petrbs patch | brooksmoses | OpenFOAM Installation | 48 | April 16, 2006 01:20 |