CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Software User Forums > OpenFOAM > OpenFOAM Meshing & Mesh Conversion

[snappyHexMesh] Bad/jagged mesh around intersection of two .stl bodies

Register Blogs Community New Posts Updated Threads Search

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   August 29, 2016, 06:04
Default Bad/jagged mesh around intersection of two .stl bodies
  #1
Member
 
Bruno
Join Date: Jun 2016
Location: Siegen, Germany
Posts: 59
Rep Power: 10
MBttR is on a distinguished road
Hi!

I'm having issues with the intersection between the .stl of my body of interest and the .stl of a cylinder which I use to define an MRF domain. I've been doing some experiments to see what may cause it, and have found out that it happens regardless of whether I use the cylinder .stl as a refinement region or not, hence whether there is mesh on the inside of the cylinder or not. I reproduced the problem using a quick example with a triangle and a cylinder, as shown in the picture below (one picture with the cylinder .stl shown, one without). I've also posted the snappyHexMeshDict. Is there something I should do to improve the mesh in this region? I've tried adding an extra refinement body (defined within sHM, not using a .stl file) over the whole system, but that doesn't help either.





Code:
/*--------------------------------*- C++ -*----------------------------------*\
| =========                 |                                                 |
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |
|  \\    /   O peration     | Version:  4.0                                   |
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      |
|    \\/     M anipulation  |                                                 |
\*---------------------------------------------------------------------------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class       dictionary;
    object      snappyHexMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

// Which of the steps to run
castellatedMesh true;
snap            true;
addLayers       true;


// Geometry. Definition of all surfaces. All surfaces are of class
// searchableSurface.
// Surfaces are used
// - to specify refinement for any mesh cell intersecting it
// - to specify refinement for any mesh cell inside/outside/near
// - to 'snap' the mesh boundary to the surface
geometry
{
    triangle.stl
    {
        type triSurfaceMesh;
        name triangle;
    }
    cyl.stl
    {
        type triSurfaceMesh;
        name cyl;
    }
};



// Settings for the castellatedMesh generation.
castellatedMeshControls
{

    // Refinement parameters
    // ~~~~~~~~~~~~~~~~~~~~~

    // If local number of cells is >= maxLocalCells on any processor
    // switches from from refinement followed by balancing
    // (current method) to (weighted) balancing before refinement.
    maxLocalCells 5000000;

    // Overall cell limit (approximately). Refinement will stop immediately
    // upon reaching this number so a refinement level might not complete.
    // Note that this is the number of cells before removing the part which
    // is not 'visible' from the keepPoint. The final number of cells might
    // actually be a lot less.
    maxGlobalCells 30000000;

    // The surface refinement loop might spend lots of iterations refining just a
    // few cells. This setting will cause refinement to stop if <= minimumRefine
    // are selected for refinement. Note: it will at least do one iteration
    // (unless the number of cells to refine is 0)
    minRefinementCells 10;

    // Allow a certain level of imbalance during refining
    // (since balancing is quite expensive)
    // Expressed as fraction of perfect balance (= overall number of cells /
    // nProcs). 0=balance always.
    maxLoadUnbalance 0.10;


    // Number of buffer layers between different levels.
    // 1 means normal 2:1 refinement restriction, larger means slower
    // refinement.
    nCellsBetweenLevels 3;



    // Explicit feature edge refinement
    // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    // Specifies a level for any cell intersected by its edges.
    // This is a featureEdgeMesh, read from constant/triSurface for now.
    features
    (
        {
            file "triangle.eMesh";
            level 4;
        }
        {
            file "cyl.eMesh";
            level 4;
        }
    );



    // Surface based refinement
    // ~~~~~~~~~~~~~~~~~~~~~~~~

    // Specifies two levels for every surface. The first is the minimum level,
    // every cell intersecting a surface gets refined up to the minimum level.
    // The second level is the maximum level. Cells that 'see' multiple
    // intersections where the intersections make an
    // angle > resolveFeatureAngle get refined up to the maximum level.

    refinementSurfaces
    {
        cyl
        {
            level       (5 5);

            faceType    internal;
            cellZone    cyl;
            faceZone    cyl;
            cellZoneInside  inside;
        }
        triangle
        {
            // Surface-wise min and max refinement level
            level (6 8);

            // Optional specification of patch type (default is wall). No
            // constraint types (cyclic, symmetry) etc. are allowed.
        }
    }

    // Resolve sharp angles
    resolveFeatureAngle 15;


    // Region-wise refinement
    // ~~~~~~~~~~~~~~~~~~~~~~

    // Specifies refinement level for cells in relation to a surface. One of
    // three modes
    // - distance. 'levels' specifies per distance to the surface the
    //   wanted refinement level. The distances need to be specified in
    //   descending order.
    // - inside. 'levels' is only one entry and only the level is used. All
    //   cells inside the surface get refined up to the level. The surface
    //   needs to be closed for this to be possible.
    // - outside. Same but cells outside.

    refinementRegions
    {
        cyl
        {
            mode        inside;
            levels      ((1E15 5));
        }
    }


    // Mesh selection
    // ~~~~~~~~~~~~~~

    // After refinement patches get added for all refinementSurfaces and
    // all cells intersecting the surfaces get put into these patches. The
    // section reachable from the locationInMesh is kept.
    // NOTE: This point should never be on a face, always inside a cell, even
    // after refinement.
    locationInMesh (0.39847 0.65104 0.4);


    // Whether any faceZones (as specified in the refinementSurfaces)
    // are only on the boundary of corresponding cellZones or also allow
    // free-standing zone faces. Not used if there are no faceZones.
    allowFreeStandingZoneFaces true;
}



// Settings for the snapping.
snapControls
{
    //- Number of patch smoothing iterations before finding correspondence
    //  to surface
    nSmoothPatch 3;

    //- Relative distance for points to be attracted by surface feature point
    //  or edge. True distance is this factor times local
    //  maximum edge length.
    tolerance 2.0;

    //- Number of mesh displacement relaxation iterations.
    nSolveIter 30;

    //- Maximum number of snapping relaxation iterations. Should stop
    //  before upon reaching a correct mesh.
    nRelaxIter 5;

    // Feature snapping

        //- Number of feature edge snapping iterations.
        //  Leave out altogether to disable.
        nFeatureSnapIter 10;

        //- Detect (geometric only) features by sampling the surface
        //  (default=false).
        implicitFeatureSnap false;

        //- Use castellatedMeshControls::features (default = true)
        explicitFeatureSnap true;

        //- Detect points on multiple surfaces (only for explicitFeatureSnap)
        multiRegionFeatureSnap false;
}



// Settings for the layer addition.
addLayersControls
{
    // Are the thickness parameters below relative to the undistorted
    // size of the refined cell outside layer (true) or absolute sizes (false).
    relativeSizes true;

    // Per final patch (so not geometry!) the layer information
    layers
    {
        triangle
        {
            nSurfaceLayers 3;
        }
    }

    // Expansion factor for layer mesh
    expansionRatio 1.0;

    // Wanted thickness of final added cell layer. If multiple layers
    // is the thickness of the layer furthest away from the wall.
    // Relative to undistorted size of cell outside layer.
    // See relativeSizes parameter.
    finalLayerThickness 0.5;

    // Minimum thickness of cell layer. If for any reason layer
    // cannot be above minThickness do not add layer.
    // Relative to undistorted size of cell outside layer.
    minThickness 0.1;

    // If points get not extruded do nGrow layers of connected faces that are
    // also not grown. This helps convergence of the layer addition process
    // close to features.
    // Note: changed(corrected) w.r.t 17x! (didn't do anything in 17x)
    nGrow 0;

    // Advanced settings

    // When not to extrude surface. 0 is flat surface, 90 is when two faces
    // are perpendicular
    featureAngle 60;

    // At non-patched sides allow mesh to slip if extrusion direction makes
    // angle larger than slipFeatureAngle.
    slipFeatureAngle 30;

    // Maximum number of snapping relaxation iterations. Should stop
    // before upon reaching a correct mesh.
    nRelaxIter 3;

    // Number of smoothing iterations of surface normals
    nSmoothSurfaceNormals 1;

    // Number of smoothing iterations of interior mesh movement direction
    nSmoothNormals 3;

    // Smooth layer thickness over surface patches
    nSmoothThickness 10;

    // Stop layer growth on highly warped cells
    maxFaceThicknessRatio 0.5;

    // Reduce layer growth where ratio thickness to medial
    // distance is large
    maxThicknessToMedialRatio 0.3;

    // Angle used to pick up medial axis points
    // Note: changed(corrected) w.r.t 17x! 90 degrees corresponds to 130 in 17x.
    minMedianAxisAngle 90;


    // Create buffer region for new layer terminations
    nBufferCellsNoExtrude 0;


    // Overall max number of layer addition iterations. The mesher will exit
    // if it reaches this number of iterations; possibly with an illegal
    // mesh.
    nLayerIter 50;
}



// Generic mesh quality settings. At any undoable phase these determine
// where to undo.
// Generic mesh quality settings. At any undoable phase these determine
// where to undo.
meshQualityControls
{
    //- Maximum non-orthogonality allowed. Set to 180 to disable.
    maxNonOrtho 65;

    //- Max skewness allowed. Set to <0 to disable.
    maxBoundarySkewness 20;
    maxInternalSkewness 4;

    //- Max concaveness allowed. Is angle (in degrees) below which concavity
    //  is allowed. 0 is straight face, <0 would be convex face.
    //  Set to 180 to disable.
    maxConcave 80;

    //- Minimum projected area v.s. actual area. Set to -1 to disable.
    minFlatness 0.5;

    //- Minimum pyramid volume. Is absolute volume of cell pyramid.
    //  Set to a sensible fraction of the smallest cell volume expected.
    //  Set to very negative number (e.g. -1E30) to disable.
    minVol 1e-13;
    minTetQuality 1e-30;

    //- Minimum face area. Set to <0 to disable.
    minArea -1;

    //- Minimum face twist. Set to <-1 to disable. dot product of face normal
    //  and face centre triangles normal
    minTwist 0.02;

    //- Minimum normalised cell determinant
    //  1 = hex, <= 0 = folded or flattened illegal cell
    minDeterminant 0.001;

    //- minFaceWeight (0 -> 0.5)
    minFaceWeight 0.02;

    //- minVolRatio (0 -> 1)
    minVolRatio 0.01;

    //must be >0 for Fluent compatibility
    minTriangleTwist -1;


    // Advanced

    //- Number of error distribution iterations
    nSmoothScale 4;
    //- Amount to scale back displacement at error points
    errorReduction 0.75;
}


// Advanced

// Write flags
writeFlags
(
    scalarLevels
    layerSets
    layerFields     // write volScalarField for layer coverage
);


// Merge tolerance. Is fraction of overall bounding box of initial mesh.
// Note: the write tolerance needs to be higher than this.
mergeTolerance 1e-6;


// ************************************************************************* //
I want to do the MRF region using a .stl file so I don't have to make a complicated blockMesh using cylinders. (If I make the cylinder using a searchableBox on a blockMesh without cylindrical parts the resolution of the cylinder will be as low as that of the blockMesh base around it).

Cheers!

Bruno

*edit*
Tried something new, following the idea (http://www.cfd-online.com/Forums/ope...-stl-file.html) that sHM doesn't quite know what to do with two overlapping .stl files by combining them into one .stl as posted below. However, also doesn't work. Back to the drawing boards!

Code:
solid triangle 

endsolid 
 
solid cyl 

endsolid

Last edited by MBttR; August 29, 2016 at 07:13.
MBttR is offline   Reply With Quote

Old   August 30, 2016, 10:15
Default
  #2
Member
 
Bruno
Join Date: Jun 2016
Location: Siegen, Germany
Posts: 59
Rep Power: 10
MBttR is on a distinguished road
Anyone has an idea? Cheers!
MBttR is offline   Reply With Quote

Old   October 2, 2016, 17:07
Default
  #3
Senior Member
 
Join Date: Nov 2010
Location: USA
Posts: 1,232
Rep Power: 25
me3840 is on a distinguished road
If you import your edge meshes into paraview do they look okay?
me3840 is offline   Reply With Quote

Old   October 13, 2016, 12:12
Default
  #4
Member
 
Bruno
Join Date: Jun 2016
Location: Siegen, Germany
Posts: 59
Rep Power: 10
MBttR is on a distinguished road
Quote:
Originally Posted by me3840 View Post
If you import your edge meshes into paraview do they look okay?
Hi thanks for the reply! Sorry, I was working on other stuff and only now got back to this.

When I convert my .eMesh files to .obj and open them in Paraview, they to look okay. At least, I don't see any of the jaggedness. See picture:



Any idea?
MBttR is offline   Reply With Quote

Old   October 13, 2016, 14:43
Default
  #5
Senior Member
 
Join Date: Nov 2010
Location: USA
Posts: 1,232
Rep Power: 25
me3840 is on a distinguished road
What do the initial surface meshes look like?
me3840 is offline   Reply With Quote

Old   October 14, 2016, 03:33
Default
  #6
Senior Member
 
akidess's Avatar
 
Anton Kidess
Join Date: May 2009
Location: Germany
Posts: 1,377
Rep Power: 30
akidess will become famous soon enough
You do notice you don't have an edge mesh for the intersection?
__________________
*On twitter @akidTwit
*Spend as much time formulating your questions as you expect people to spend on their answer.
akidess is offline   Reply With Quote

Old   October 14, 2016, 04:56
Default
  #7
Member
 
Bruno
Join Date: Jun 2016
Location: Siegen, Germany
Posts: 59
Rep Power: 10
MBttR is on a distinguished road
Quote:
Originally Posted by akidess View Post
You do notice you don't have an edge mesh for the intersection?
I do, but how would I get that? Do I need to make one .stl of the two bodies combined and do a surfaceFeatureExtract on that?
MBttR is offline   Reply With Quote

Old   October 14, 2016, 04:57
Default
  #8
Member
 
Bruno
Join Date: Jun 2016
Location: Siegen, Germany
Posts: 59
Rep Power: 10
MBttR is on a distinguished road
Quote:
Originally Posted by me3840 View Post
What do the initial surface meshes look like?
If meshed separately, both .stl bodies look just fine.
MBttR is offline   Reply With Quote

Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
[snappyHexMesh] snappyHexMesh does not create any mesh except one for the reference cell Arman_N OpenFOAM Meshing & Mesh Conversion 1 May 20, 2019 18:16
[snappyHexMesh] Creating multiple multiple cell zones with snappyHexMesh - a newbie in deep water! divergence OpenFOAM Meshing & Mesh Conversion 0 January 23, 2019 05:17
[snappyHexMesh] SHM problem : KVLCC2 with appendage mesh sc.park OpenFOAM Meshing & Mesh Conversion 1 March 13, 2016 14:28
[mesh manipulation] Importing Multiple Meshes thomasnwalshiii OpenFOAM Meshing & Mesh Conversion 18 December 19, 2015 19:57
[Gmsh] 2D Mesh Generation Tutorial for GMSH aeroslacker OpenFOAM Meshing & Mesh Conversion 12 January 19, 2012 04:52


All times are GMT -4. The time now is 21:08.