|
[Sponsors] |
[snappyHexMesh] snappyHexMesh failure to snap to geometry |
|
LinkBack | Thread Tools | Search this Thread | Display Modes |
November 14, 2014, 17:27 |
snappyHexMesh failure to snap to geometry
|
#1 |
New Member
Dan W
Join Date: Nov 2014
Posts: 1
Rep Power: 0 |
First off, I'm a fairly new user of openFOAM so please forgive any stupidity that follows...
I'm trying to model the flow out of a cylindrical pipe, and I'm finding that the cells don't snap to my geometry properly. I usually end up with something looking like "ubuntu 5", attached. I've managed to get it closer to a cylinder, but still very pixelated, by reducing the size of my blockMesh domain but I'm not sure I can reasonably go much lower. Here's my snappyHexMeshDict, in case that helps. Code:
/*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 2.3.0 | | \\ / A nd | Web: www.OpenFOAM.org | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class dictionary; object snappyHexMeshDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // Which of the steps to run castellatedMesh true; snap true; addLayers false; // Geometry. Definition of all surfaces. All surfaces are of class // searchableSurface. // Surfaces are used // - to specify refinement for any mesh cell intersecting it // - to specify refinement for any mesh cell inside/outside/near // - to 'snap' the mesh boundary to the surface geometry { cylinder.stl { type triSurfaceMesh; name cylinder; } jet.stl { type triSurfaceMesh; name jet; } refinementBox1 { type searchableBox; min (0.1 0 0); max ( 0.31 0.065 0.065); } refinementBox2 { type searchableBox; min (0.31 0 0); max ( 0.53 0.09 0.09); } }; // Settings for the castellatedMesh generation. castellatedMeshControls { // Refinement parameters // ~~~~~~~~~~~~~~~~~~~~~ // If local number of cells is >= maxLocalCells on any processor // switches from from refinement followed by balancing // (current method) to (weighted) balancing before refinement. maxLocalCells 100000; // Overall cell limit (approximately). Refinement will stop immediately // upon reaching this number so a refinement level might not complete. // Note that this is the number of cells before removing the part which // is not 'visible' from the keepPoint. The final number of cells might // actually be a lot less. maxGlobalCells 150000; // The surface refinement loop might spend lots of iterations refining just a // few cells. This setting will cause refinement to stop if <= minimumRefine // are selected for refinement. Note: it will at least do one iteration // (unless the number of cells to refine is 0) minRefinementCells 10; // Allow a certain level of imbalance during refining // (since balancing is quite expensive) // Expressed as fraction of perfect balance (= overall number of cells / // nProcs). 0=balance always. maxLoadUnbalance 0.10; // Number of buffer layers between different levels. // 1 means normal 2:1 refinement restriction, larger means slower // refinement. nCellsBetweenLevels 1; // Explicit feature edge refinement // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies a level for any cell intersected by its edges. // This is a featureEdgeMesh, read from constant/triSurface for now. features ( { file "cylinder.eMesh"; level 3; } { file "jet.eMesh"; level 3; } ); // Surface based refinement // ~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies two levels for every surface. The first is the minimum level, // every cell intersecting a surface gets refined up to the minimum level. // The second level is the maximum level. Cells that 'see' multiple // intersections where the intersections make an // angle > resolveFeatureAngle get refined up to the maximum level. refinementSurfaces { cylinder { // Surface-wise min and max refinement level level (3 4); // Optional specification of patch type (default is wall). No // constraint types (cyclic, symmetry) etc. are allowed. patchInfo { type wall; inGroups (cylinderGroup); } } jet { // Surface-wise min and max refinement level level (3 4); // Optional specification of patch type (default is wall). No // constraint types (cyclic, symmetry) etc. are allowed. patchInfo { type inlet; inGroups (jetGroup); } } } // Resolve sharp angles resolveFeatureAngle 30; // Region-wise refinement // ~~~~~~~~~~~~~~~~~~~~~~ // Specifies refinement level for cells in relation to a surface. One of // three modes // - distance. 'levels' specifies per distance to the surface the // wanted refinement level. The distances need to be specified in // descending order. // - inside. 'levels' is only one entry and only the level is used. All // cells inside the surface get refined up to the level. The surface // needs to be closed for this to be possible. // - outside. Same but cells outside. refinementRegions { refinementBox1 { mode distance; levels ((1E15 3)); } refinementBox2 { mode distance; levels ((1E15 3)); } } // Mesh selection // ~~~~~~~~~~~~~~ // After refinement patches get added for all refinementSurfaces and // all cells intersecting the surfaces get put into these patches. The // section reachable from the locationInMesh is kept. // NOTE: This point should never be on a face, always inside a cell, even // after refinement. locationInMesh (0.1004301 0.02801 0.02801); // Whether any faceZones (as specified in the refinementSurfaces) // are only on the boundary of corresponding cellZones or also allow // free-standing zone faces. Not used if there are no faceZones. allowFreeStandingZoneFaces true; } // Settings for the snapping. snapControls { //- Number of patch smoothing iterations before finding correspondence // to surface nSmoothPatch 5; //- Relative distance for points to be attracted by surface feature point // or edge. True distance is this factor times local // maximum edge length. tolerance 4.0; //- Number of mesh displacement relaxation iterations. nSolveIter 50; //- Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 10; // Feature snapping //- Number of feature edge snapping iterations. // Leave out altogether to disable. nFeatureSnapIter 10; //- Detect (geometric only) features by sampling the surface // (default=false). implicitFeatureSnap false; //- Use castellatedMeshControls::features (default = true) explicitFeatureSnap true; //- Detect points on multiple surfaces (only for explicitFeatureSnap) multiRegionFeatureSnap false; } // Settings for the layer addition. addLayersControls { // Are the thickness parameters below relative to the undistorted // size of the refined cell outside layer (true) or absolute sizes (false). relativeSizes true; // Per final patch (so not geometry!) the layer information layers { "(symmetryPlane|cylinder).*" { nSurfaceLayers 1; } } // Expansion factor for layer mesh expansionRatio 1.0; // Wanted thickness of final added cell layer. If multiple layers // is the // thickness of the layer furthest away from the wall. // Relative to undistorted size of cell outside layer. // is the thickness of the layer furthest away from the wall. // See relativeSizes parameter. finalLayerThickness 0.3; // Minimum thickness of cell layer. If for any reason layer // cannot be above minThickness do not add layer. // Relative to undistorted size of cell outside layer. minThickness 0.1; // If points get not extruded do nGrow layers of connected faces that are // also not grown. This helps convergence of the layer addition process // close to features. // Note: changed(corrected) w.r.t 17x! (didn't do anything in 17x) nGrow 0; // Advanced settings // When not to extrude surface. 0 is flat surface, 90 is when two faces // are perpendicular featureAngle 60; // At non-patched sides allow mesh to slip if extrusion direction makes // angle larger than slipFeatureAngle. slipFeatureAngle 30; // Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 3; // Number of smoothing iterations of surface normals nSmoothSurfaceNormals 1; // Number of smoothing iterations of interior mesh movement direction nSmoothNormals 3; // Smooth layer thickness over surface patches nSmoothThickness 10; // Stop layer growth on highly warped cells maxFaceThicknessRatio 0.5; // Reduce layer growth where ratio thickness to medial // distance is large maxThicknessToMedialRatio 0.3; // Angle used to pick up medial axis points // Note: changed(corrected) w.r.t 17x! 90 degrees corresponds to 130 in 17x. minMedianAxisAngle 90; // Create buffer region for new layer terminations nBufferCellsNoExtrude 0; // Overall max number of layer addition iterations. The mesher will exit // if it reaches this number of iterations; possibly with an illegal // mesh. nLayerIter 50; } // Generic mesh quality settings. At any undoable phase these determine // where to undo. meshQualityControls { #include "meshQualityDict" // Advanced //- Number of error distribution iterations nSmoothScale 4; //- amount to scale back displacement at error points errorReduction 0.75; } // Advanced // Write flags writeFlags ( layerFields // write volScalarField for layer coverage ); // Merge tolerance. Is fraction of overall bounding box of initial mesh. // Note: the write tolerance needs to be higher than this. mergeTolerance 1e-6; // ************************************************************************* // |
|
November 17, 2014, 06:00 |
|
#2 |
Member
Join Date: Jul 2011
Posts: 54
Rep Power: 15 |
Have you had a look at the *.eMesh files? You can convert them to *.obj files using surfaceFeatureConvert and then have a look at them in paraview.
Some tips can also be found in this thread: http://www.cfd-online.com/Forums/ope...ain-edges.html Best regards, Andreas |
|
Tags |
cylinder, mesh, snappyhexmesh 3d |
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
[snappyHexMesh] Problem and doubts with blockMesh, snappyHexMesh and multiple geometry | luca1992 | OpenFOAM Meshing & Mesh Conversion | 0 | August 23, 2017 12:40 |
[snappyHexMesh] snappyhexmesh without geometry files | lebc | OpenFOAM Meshing & Mesh Conversion | 6 | September 9, 2016 14:00 |
[snappyHexMesh] snappyHexMesh. irregular cells on snap stage | Svensen | OpenFOAM Meshing & Mesh Conversion | 0 | April 3, 2015 04:12 |
[snappyHexMesh] snappyHexMesh / surfaceFeatureExtract do not snap to edge | pythag0ra5 | OpenFOAM Meshing & Mesh Conversion | 5 | September 12, 2013 11:48 |
[snappyHexMesh] SnappyHexMesh meshes inside and outside of an STL geometry | villier | OpenFOAM Meshing & Mesh Conversion | 17 | June 15, 2010 20:51 |