|
[Sponsors] |
November 1, 2014, 13:09 |
Meshing Frisbee Surroundings
|
#1 |
Member
Rubén
Join Date: Oct 2014
Location: Munich
Posts: 47
Rep Power: 12 |
Hi FOAMers!
I am doing my dissertation with OpenFOAM, and I am a newbie, but I have ended up loving Linux and OpenFOAM. I need some help, I am trying to make a mesh around a frisbee to study its external flow. I have my .stl file, and I used snappyHexMesh. As you can see, I have created two refinement boxes. I don't know thy, but if I slice my mesh in the middel of my mesh, I get this strange cells. The problem is only in this slice, if I slice in other parts of the mesh, ther is no strange cells at all. I don't understand completely snappyhexmeshdict, so I would be pleased for every piece of advice Where is the problem? What do you think? Sorry for my Enclish and thank you very much in advance. I have copied the images of the middle slice and my snappyhexmeshdict file Frisbee1.jpg Frisbee2.jpg Frisbee3.jpg Frisbee4.jpg /*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 2.3.0 | | \\ / A nd | Web: www.OpenFOAM.org | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class dictionary; object snappyHexMeshDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // Which of the steps to run castellatedMesh true; snap true; addLayers true; // Geometry. Definition of all surfaces. All surfaces are of class // searchableSurface. // Surfaces are used // - to specify refinement for any mesh cell intersecting it // - to specify refinement for any mesh cell inside/outside/near // - to 'snap' the mesh boundary to the surface geometry { frisbee_ascii.stl // Nombre del archivo STL { type triSurfaceMesh; // Tipo de superficie STL en OpenFOAM name frisbee; // Nombre de acceso a la geometría a partir de ahora } refinementbox1 { type searchableBox; min (-0.15 -0.03 -0.15); max (0.15 0.01 0.15) } refinementbox2 { type searchableBox; min (-0.5 -0.1 -1); max (4 0.1 1); } } // Settings for the castellatedMesh generation. castellatedMeshControls { // Refinement parameters // ~~~~~~~~~~~~~~~~~~~~~ // If local number of cells is >= maxLocalCells on any processor // switches from from refinement followed by balancing // (current method) to (weighted) balancing before refinement. maxLocalCells 150000; // Overall cell limit (approximately). Refinement will stop immediately // upon reaching this number so a refinement level might not complete. // Note that this is the number of cells before removing the part which // is not 'visible' from the keepPoint. The final number of cells might // actually be a lot less. maxGlobalCells 2000000; // The surface refinement loop might spend lots of iterations refining just a // few cells. This setting will cause refinement to stop if <= minimumRefine // are selected for refinement. Note: it will at least do one iteration // (unless the number of cells to refine is 0) minRefinementCells 0; // Number of buffer layers between different levels. // 1 means normal 2:1 refinement restriction, larger means slower // refinement. nCellsBetweenLevels 1; // Explicit feature edge refinement // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies a level for any cell intersected by its edges. // This is a featureEdgeMesh, read from constant/triSurface for now. features ( ); // Surface based refinement // ~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies two levels for every surface. The first is the minimum level, // every cell intersecting a surface gets refined up to the minimum level. // The second level is the maximum level. Cells that 'see' multiple // intersections where the intersections make an // angle > resolveFeatureAngle get refined up to the maximum level. refinementSurfaces { frisbee { // Mínimo y máximo nivel de refinamiento geométrico level (3 3); } } resolveFeatureAngle 30; // Region-wise refinement // ~~~~~~~~~~~~~~~~~~~~~~ // Specifies refinement level for cells in relation to a surface. One of // three modes // - distance. 'levels' specifies per distance to the surface the // wanted refinement level. The distances need to be specified in // descending order. // - inside. 'levels' is only one entry and only the level is used. All // cells inside the surface get refined up to the level. The surface // needs to be closed for this to be possible. // - outside. Same but cells outside. refinementRegions { refinementbox1 { mode inside; levels ((1.0 10)); } refinementbox2 { mode inside; levels ((1.0 6)); } } // Mesh selection // ~~~~~~~~~~~~~~ // After refinement patches get added for all refinementSurfaces and // all cells intersecting the surfaces get put into these patches. The // section reachable from the locationInMesh is kept. // NOTE: This point should never be on a face, always inside a cell, even // after refinement. // This is an outside point locationInMesh (-0.033 -0.033 0.0033); locationInMesh (0 0 0); // Inside point // Whether any faceZones (as specified in the refinementSurfaces) // are only on the boundary of corresponding cellZones or also allow // free-standing zone faces. Not used if there are no faceZones. allowFreeStandingZoneFaces true; } // Settings for the snapping. snapControls { //- Number of patch smoothing iterations before finding correspondence // to surface nSmoothPatch 5; //- Relative distance for points to be attracted by surface feature point // or edge. True distance is this factor times local // maximum edge length. tolerance 0.5; //- Number of mesh displacement relaxation iterations. nSolveIter 300; //- Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 5; // Feature snapping //- Number of feature edge snapping iterations. // Leave out altogether to disable. nFeatureSnapIter 10; //- Detect (geometric) features by sampling the surface implicitFeatureSnap false; //- Use castellatedMeshControls::features explicitFeatureSnap true; //- Detect features between multiple surfaces // (only for explicitFeatureSnap, default = false) multiRegionFeatureSnap true; } // Settings for the layer addition. addLayersControls { // Are the thickness parameters below relative to the undistorted // size of the refined cell outside layer (true) or absolute sizes (false). relativeSizes true; // Per final patch (so not geometry!) the layer information layers { "frisbee_.*" { nSurfaceLayers 10; } } // Expansion factor for layer mesh expansionRatio 1.0; // Wanted thickness of final added cell layer. If multiple layers // is the thickness of the layer furthest away from the wall. // See relativeSizes parameter. finalLayerThickness 0.3; // Minimum thickness of cell layer. If for any reason layer // cannot be above minThickness do not add layer. // See relativeSizes parameter. minThickness 0.25; // If points get not extruded do nGrow layers of connected faces that are // also not grown. This helps convergence of the layer addition process // close to features. nGrow 0; // Advanced settings // When not to extrude surface. 0 is flat surface, 90 is when two faces // are perpendicular featureAngle 30; // Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 5; // Number of smoothing iterations of surface normals nSmoothSurfaceNormals 1; // Number of smoothing iterations of interior mesh movement direction nSmoothNormals 3; // Smooth layer thickness over surface patches nSmoothThickness 10; // Stop layer growth on highly warped cells maxFaceThicknessRatio 0.5; // Reduce layer growth where ratio thickness to medial // distance is large maxThicknessToMedialRatio 0.3; // Angle used to pick up medial axis points minMedianAxisAngle 90; // Create buffer region for new layer terminations nBufferCellsNoExtrude 0; // Overall max number of layer addition iterations. The mesher will exit // if it reaches this number of iterations; possibly with an illegal // mesh. nLayerIter 50; // Max number of iterations after which relaxed meshQuality controls // get used. Up to nRelaxIter it uses the settings in meshQualityControls, // after nRelaxIter it uses the values in meshQualityControls::relaxed. nRelaxedIter 20; } // Generic mesh quality settings. At any undoable phase these determine // where to undo. meshQualityControls { #include "meshQualityDict" // Optional : some meshing phases allow usage of relaxed rules. // See e.g. addLayersControls::nRelaxedIter. relaxed { //- Maximum non-orthogonality allowed. Set to 180 to disable. maxNonOrtho 75; } // Advanced //- Number of error distribution iterations nSmoothScale 4; //- amount to scale back displacement at error points errorReduction 0.75; } // Advanced // Write flags writeFlags ( scalarLevels // write volScalarField with cellLevel for postprocessing layerSets // write cellSets, faceSets of faces in layer layerFields // write volScalarField for layer coverage ); // Merge tolerance. Is fraction of overall bounding box of initial mesh. // Note: the write tolerance needs to be higher than this. mergeTolerance 1E-6; // ************************************************** *********************** // |
|
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
Meshing Process | sidharth9426 | STAR-CCM+ | 4 | September 15, 2015 04:31 |
[ICEM] Flow channel meshing problems | StefanG | ANSYS Meshing & Geometry | 19 | May 15, 2012 07:44 |
[ANSYS Meshing] Meshing strategy for External Flows | Hybrid | ANSYS Meshing & Geometry | 0 | January 24, 2012 15:27 |
Best Meshing scheme for Cylinder | Nutrex | Main CFD Forum | 4 | July 29, 2008 12:03 |
Volume Meshing & Face Meshing? singularity of grid | ken | FLUENT | 0 | September 4, 2003 12:08 |