|
[Sponsors] |
March 24, 2014, 21:50 |
Improving prism mesh
|
#1 |
Senior Member
Join Date: Nov 2010
Location: USA
Posts: 1,232
Rep Power: 25 |
Hello all,
I have a simple mixing pipe problem that I'm trying to put prisms on. It seems when they approach the BCs (to the right and bottom), the layers collapse. I'm guessing this is because of the fineness of the edges there, but I'm unsure on how to get them right. Also the prisms can't seem to wrap around the two bends on the top and bottom of the pipe shown. I'm pretty surprised the top one didn't work, it's not a very steep slope. Anyone have any tips? Here are some images of my mesh: http://imgur.com/a/eg6FG Also here is my snappy dictionary: Code:
/*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 2.2.2 | | \\ / A nd | Web: www.OpenFOAM.org | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class dictionary; object snappyHexMeshDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // Which of the steps to run castellatedMesh true; snap true; addLayers true; // Geometry. Definition of all surfaces. All surfaces are of class // searchableSurface. // Surfaces are used // - to specify refinement for any mesh cell intersecting it // - to specify refinement for any mesh cell inside/outside/near // - to 'snap' the mesh boundary to the surface geometry { geom.stl { type triSurfaceMesh; regions { wall { name wall; } outlet { name outlet; } largeInlet { name largeInlet; } smallInlet { name smallInlet; } } } }; // Settings for the castellatedMesh generation. castellatedMeshControls { // Refinement parameters // ~~~~~~~~~~~~~~~~~~~~~ // If local number of cells is >= maxLocalCells on any processor // switches from from refinement followed by balancing // (current method) to (weighted) balancing before refinement. maxLocalCells 100000; // Overall cell limit (approximately). Refinement will stop immediately // upon reaching this number so a refinement level might not complete. // Note that this is the number of cells before removing the part which // is not 'visible' from the keepPoint. The final number of cells might // actually be a lot less. maxGlobalCells 2000000; // The surface refinement loop might spend lots of iterations refining just a // few cells. This setting will cause refinement to stop if <= minimumRefine // are selected for refinement. Note: it will at least do one iteration // (unless the number of cells to refine is 0) minRefinementCells 10; // Allow a certain level of imbalance during refining // (since balancing is quite expensive) // Expressed as fraction of perfect balance (= overall number of cells / // nProcs). 0=balance always. maxLoadUnbalance 0.10; // Number of buffer layers between different levels. // 1 means normal 2:1 refinement restriction, larger means slower // refinement. nCellsBetweenLevels 3; // Explicit feature edge refinement // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies a level for any cell intersected by its edges. // This is a featureEdgeMesh, read from constant/triSurface for now. features ( // { // file "motorBike.eMesh"; // level 6; //} ); // Surface based refinement // ~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies two levels for every surface. The first is the minimum level, // every cell intersecting a surface gets refined up to the minimum level. // The second level is the maximum level. Cells that 'see' multiple // intersections where the intersections make an // angle > resolveFeatureAngle get refined up to the maximum level. refinementSurfaces { geom.stl { // Surface-wise min and max refinement level level (0 0); // Optional specification of patch type (default is wall). No // constraint types (cyclic, symmetry) etc. are allowed. regions { wall { level (0 3); } outlet { level (0 3); } largeInlet { level (0 3); } smallInlet { level (0 3); } } // patchInfo // { // type wall; //inGroups (motorBikeGroup); // } } } // Resolve sharp angles resolveFeatureAngle 30; // Region-wise refinement // ~~~~~~~~~~~~~~~~~~~~~~ // Specifies refinement level for cells in relation to a surface. One of // three modes // - distance. 'levels' specifies per distance to the surface the // wanted refinement level. The distances need to be specified in // descending order. // - inside. 'levels' is only one entry and only the level is used. All // cells inside the surface get refined up to the level. The surface // needs to be closed for this to be possible. // - outside. Same but cells outside. refinementRegions { // refinementBox // { // mode inside; // levels ((1E15 4)); // } } // Mesh selection // ~~~~~~~~~~~~~~ // After refinement patches get added for all refinementSurfaces and // all cells intersecting the surfaces get put into these patches. The // section reachable from the locationInMesh is kept. // NOTE: This point should never be on a face, always inside a cell, even // after refinement. locationInMesh (-0.11 0.06 0.0); // Whether any faceZones (as specified in the refinementSurfaces) // are only on the boundary of corresponding cellZones or also allow // free-standing zone faces. Not used if there are no faceZones. allowFreeStandingZoneFaces true; } // Settings for the snapping. snapControls { //- Number of patch smoothing iterations before finding correspondence // to surface nSmoothPatch 3; //- Relative distance for points to be attracted by surface feature point // or edge. True distance is this factor times local // maximum edge length. tolerance 2.0; //- Number of mesh displacement relaxation iterations. nSolveIter 30; //- Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 5; // Feature snapping //- Number of feature edge snapping iterations. // Leave out altogether to disable. nFeatureSnapIter 2; //- Detect (geometric only) features by sampling the surface // (default=false). implicitFeatureSnap true; //- Use castellatedMeshControls::features (default = true) explicitFeatureSnap false; //- Detect points on multiple surfaces (only for explicitFeatureSnap) multiRegionFeatureSnap false; } // Settings for the layer addition. addLayersControls { // Are the thickness parameters below relative to the undistorted // size of the refined cell outside layer (true) or absolute sizes (false). relativeSizes false; // Per final patch (so not geometry!) the layer information layers { wall { nSurfaceLayers 5; } } // Expansion factor for layer mesh expansionRatio 1.3; // Wanted thickness of final added cell layer. If multiple layers // is the // thickness of the layer furthest away from the wall. // Relative to undistorted size of cell outside layer. // is the thickness of the layer furthest away from the wall. // See relativeSizes parameter. finalLayerThickness 0.0005; // Minimum thickness of cell layer. If for any reason layer // cannot be above minThickness do not add layer. // Relative to undistorted size of cell outside layer. minThickness 0.00001; // If points get not extruded do nGrow layers of connected faces that are // also not grown. This helps convergence of the layer addition process // close to features. // Note: changed(corrected) w.r.t 17x! (didn't do anything in 17x) nGrow 0; // Advanced settings // When not to extrude surface. 0 is flat surface, 90 is when two faces // are perpendicular featureAngle 90; // At non-patched sides allow mesh to slip if extrusion direction makes // angle larger than slipFeatureAngle. slipFeatureAngle 50; // Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 3; // Number of smoothing iterations of surface normals nSmoothSurfaceNormals 1; // Number of smoothing iterations of interior mesh movement direction nSmoothNormals 3; // Smooth layer thickness over surface patches nSmoothThickness 10; // Stop layer growth on highly warped cells maxFaceThicknessRatio 1.0; // Reduce layer growth where ratio thickness to medial // distance is large maxThicknessToMedialRatio 0.5; // Angle used to pick up medial axis points // Note: changed(corrected) w.r.t 17x! 90 degrees corresponds to 130 in 17x. minMedianAxisAngle 90; // Create buffer region for new layer terminations nBufferCellsNoExtrude 0; // Overall max number of layer addition iterations. The mesher will exit // if it reaches this number of iterations; possibly with an illegal // mesh. nLayerIter 50; } // Generic mesh quality settings. At any undoable phase these determine // where to undo. meshQualityControls { //- Maximum non-orthogonality allowed. Set to 180 to disable. maxNonOrtho 65; //- Max skewness allowed. Set to <0 to disable. maxBoundarySkewness 20; maxInternalSkewness 4; //- Max concaveness allowed. Is angle (in degrees) below which concavity // is allowed. 0 is straight face, <0 would be convex face. // Set to 180 to disable. maxConcave 80; //- Minimum pyramid volume. Is absolute volume of cell pyramid. // Set to a sensible fraction of the smallest cell volume expected. // Set to very negative number (e.g. -1E30) to disable. minVol 1e-13; //- Minimum quality of the tet formed by the face-centre // and variable base point minimum decomposition triangles and // the cell centre. This has to be a positive number for tracking // to work. Set to very negative number (e.g. -1E30) to // disable. // <0 = inside out tet, // 0 = flat tet // 1 = regular tet minTetQuality 1e-30; //- Minimum face area. Set to <0 to disable. minArea -1; //- Minimum face twist. Set to <-1 to disable. dot product of face normal //- and face centre triangles normal minTwist 0.02; //- minimum normalised cell determinant //- 1 = hex, <= 0 = folded or flattened illegal cell minDeterminant 0.001; //- minFaceWeight (0 -> 0.5) minFaceWeight 0.02; //- minVolRatio (0 -> 1) minVolRatio 0.01; //must be >0 for Fluent compatibility minTriangleTwist -1; // Advanced //- Number of error distribution iterations nSmoothScale 4; //- amount to scale back displacement at error points errorReduction 0.75; } // Advanced // Flags for optional output // 0 : only write final meshes // 1 : write intermediate meshes // 2 : write volScalarField with cellLevel for postprocessing // 4 : write current intersections as .obj files debug 0; // Merge tolerance. Is fraction of overall bounding box of initial mesh. // Note: the write tolerance needs to be higher than this. mergeTolerance 1e-6; // ************************************************************************* // |
|
March 30, 2014, 08:42 |
|
#2 |
Member
Julian Langowski
Join Date: May 2011
Location: Bremen, Germany
Posts: 91
Rep Power: 15 |
Dear me3840,
here some steps, I would try first: -Refine the base blockMesh; The surface cells seem to have a quite hight aspect ratio in pipe direction -Increase max. refinement level; Might have the same effect as above See, if this helps, otherwise you might want to play around with: -resolveFeatureAngle -Scaling factor of cell layers Best regards Julian
__________________
πάντα ῥεῖ - Heraclitus |
|
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
[ICEM] Creation of hexa dominant mesh and prism layer | gnuboard | ANSYS Meshing & Geometry | 7 | January 11, 2018 05:13 |
[Other] Can't grow prism mesh off a Wrap-type object using zone-specific growth option | Flashfake | ANSYS Meshing & Geometry | 0 | July 23, 2016 04:47 |
[ICEM] Bad Quality | **Anny** | ANSYS Meshing & Geometry | 7 | May 28, 2015 06:03 |
Moving mesh | Niklas Wikstrom (Wikstrom) | OpenFOAM Running, Solving & CFD | 122 | June 15, 2014 07:20 |
Mesh motion with Translation & Rotation | Doginal | CFX | 2 | January 12, 2014 07:21 |