|
[Sponsors] |
August 2, 2013, 11:48 |
mergeMatchPairs with arcs
|
#1 |
Member
Robert
Join Date: Aug 2012
Location: Berlin
Posts: 74
Rep Power: 14 |
Hi everyone,
I'v got a little problem finishing my blockMesh (attached). I want to merge two smaller patches with one patch of the same size as the added size of the smaller ones. They are internal patches, so they should vanish in the end. The nodes and the egdes make a perfect match as you can see from the screenshot (attached), but blockMesh produces an error in the "attachPolyTopoChanger"-Step, causing a segmentation fault. I'v tried my best to fix it on my own, but so far I've come to no solution. Hope you know a fix! Best regards, Robert P.S.: Don't mind the massive blockMeshDict, the important stuff is at the bottom of the file. Code:
/*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 2.1.1 | | \\ / A nd | Web: www.OpenFOAM.org | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class dictionary; object blockMeshDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // convertToMeters 1; vertices ( (0.0196 0 -1.04)//0 (0.0205 0 -1.04)//1 (0.0205 0 -0.44)//2 (0.0196 0 -0.44)//3 (-0.0196 0 -1.04)//4 (-0.0205 0 -1.04)//5 (-0.0205 0 -0.44)//6 (-0.0196 0 -0.44)//7 (0.0196 0 -1.04)//8 (0.0205 0 -1.04)//9 (0.0205 0 -0.44)//10 (0.0196 0 -0.44)//11 (-0.0196 0 -1.04)//12 (-0.0205 0 -1.04)//13 (-0.0205 0 -0.44)//14 (-0.0196 0 -0.44)//15 (0.0205 0 -0.335)//16 (0.0196 0 -0.335)//17 (-0.0205 0 -0.335)//18 (-0.0196 0 -0.335)//19 (0.0205 0 -0.335)//20 (0.0196 0 -0.335)//21 (-0.0205 0 -0.335)//22 (-0.0196 0 -0.335)//23 (0.014 0 -0.44)//24 (0.014 0 -0.335)//25 (-0.014 0 -0.44)//26 (-0.014 0 -0.335)//27 (0.014 0 -0.44)//28 (0.014 0 -0.335)//29 (-0.014 0 -0.44)//30 (-0.014 0 -0.335)//31 (0.006 0 -0.44)//32 (0.013 0 -0.44)//33 (0.013 0 -0.335)//34 (0.006 0 -0.335)//35 (-0.006 0 -0.44)//36 (-0.013 0 -0.44)//37 (-0.013 0 -0.335)//38 (-0.006 0 -0.335)//39 (0.006 0 -0.44)//40 (0.013 0 -0.44)//41 (0.013 0 -0.335)//42 (0.006 0 -0.335)//43 (-0.006 0 -0.44)//44 (-0.013 0 -0.44)//45 (-0.013 0 -0.335)//46 (-0.006 0 -0.335)//47 (0.003 0 -0.44)//48 (0.003 0 -0.335)//49 (-0.003 0 -0.44)//50 (-0.003 0 -0.335)//51 (0.003 0 -0.44)//52 (0.003 0 -0.335)//53 (-0.003 0 -0.44)//54 (-0.003 0 -0.335)//55 (0.0205 0 -0.332)//56 (0.0196 0 -0.332)//57 (-0.0205 0 -0.332)//58 (-0.0196 0 -0.332)//59 (0.0205 0 -0.332)//60 (0.0196 0 -0.332)//61 (-0.0205 0 -0.332)//62 (-0.0196 0 -0.332)//63 (0 0.001 -0.314)//64 (0.001 0 -0.314)//65 (0.001 0 0.06)//66 (0 0.001 0.06)//67 (-0.001 0 -0.314)//68 (0 -0.001 -0.314)//69 (0 -0.001 0.06)//70 (-0.001 0 0.06)//71 (0.0205 0 -0.314)//72 (0.0196 0 -0.314)//73 (-0.0205 0 -0.314)//74 (-0.0196 0 -0.314)//75 (0.0205 0 -0.314)//76 (0.0196 0 -0.314)//77 (-0.0205 0 -0.314)//78 (-0.0196 0 -0.314)//79 (0 0.002 -0.314)//80 (0.002 0 -0.314)//81 = 132 (0.002 0 0.06)//82 = 133 (0 0.002 0.06)//83 (0 -0.002 -0.314)//84 (-0.002 0 -0.314)//85 = 134 (-0.002 0 0.06)//86 = 135 (0 -0.002 0.06)//87 (0.014 0 -0.332)//88 (0.014 0 -0.314)//89 (-0.014 0 -0.332)//90 (-0.014 0 -0.314)//91 (0.014 0 -0.332)//92 (0.014 0 -0.314)//93 (-0.014 0 -0.332)//94 (-0.014 0 -0.314)//95 (0.006 0 -0.332)//96 (0.013 0 -0.332)//97 (0.013 0 -0.314)//98 (0.006 0 -0.314)//99 (-0.006 0 -0.332)//100 (-0.013 0 -0.332)//101 (-0.013 0 -0.314)//102 (-0.006 0 -0.314)//103 (0.006 0 -0.332)//104 (0.013 0 -0.332)//105 (0.013 0 -0.314)//106 (0.006 0 -0.314)//107 (-0.006 0 -0.332)//108 (-0.013 0 -0.332)//109 (-0.013 0 -0.314)//110 (-0.006 0 -0.314)//111 (0.003 0 -0.332)//112 (0.003 0 -0.314)//113 (-0.003 0 -0.332)//114 (-0.003 0 -0.314)//115 (0.003 0 -0.332)//116 (0.003 0 -0.314)//117 (-0.003 0 -0.332)//118 (-0.003 0 -0.314)//119 (0.006 0 0.06)//120 (0.003 0 0.06)//121 (-0.006 0 0.06)//122 (-0.003 0 0.06)//123 (0.006 0 0.06)//124 (0.003 0 0.06)//125 (-0.006 0 0.06)//126 (-0.003 0 0.06)//127 (0.002 0 -0.314)//128 (0.002 0 0.06)//129 (-0.002 0 -0.314)//130 (-0.002 0 0.06)//131 (0.002 0 -0.314)//132 (0.002 0 0.06)//133 (-0.002 0 -0.314)//134 (-0.002 0 0.06)//135 (0.014 0 0.06)//136 (0.013 0 0.06)//137 (-0.014 0 0.06)//138 (-0.013 0 0.06)//139 (0.014 0 0.06)//140 (0.013 0 0.06)//141 (-0.014 0 0.06)//142 (-0.013 0 0.06)//143 (0.0196 0 0.06)//144 (-0.0196 0 0.06)//145 (0.0196 0 0.06)//146 (-0.0196 0 0.06)//147 (0.0205 0 0.06)//148 (-0.0205 0 0.06)//149 (0.0205 0 0.06)// (-0.0205 0 0.06)//151 (0.0205 0 0.252)//152 (0.0196 0 0.252)//153 (-0.0205 0 0.252)//154 (-0.0196 0 0.252)//155 (0.0205 0 0.252)//156 (0.0196 0 0.252)//157 (-0.0205 0 0.252)//158 (-0.0196 0 0.252)//159 (0.014 0 0.252)//160 (-0.014 0 0.252)//161 (0.014 0 0.252)//162 (-0.014 0 0.252)//163 (0.0205 0 0.465)//164 (0.0196 0 0.465)//165 (-0.0205 0 0.465)//166 (-0.0196 0 0.465)//167 (0.0205 0 0.465)//168 (0.0196 0 0.465)//169 (-0.0205 0 0.465)//170 (-0.0196 0 0.465)//171 (0.014 0 0.465)//172 (-0.014 0 0.465)//173 (0.014 0 0.465)//174 (-0.014 0 0.465)//175 (0.006 0 0.252)//176 (0.013 0 0.252)//177 (0.013 0 0.465)//178 (0.006 0 0.465)//179 (-0.006 0 0.252)//180 (-0.013 0 0.252)//181 (-0.013 0 0.465)//182 (-0.006 0 0.465)//183 (0.006 0 0.252)//184 (0.013 0 0.252)//185 (0.013 0 0.465)//186 (0.006 0 0.465)//187 (-0.006 0 0.252)//188 (-0.013 0 0.252)//189 (-0.013 0 0.465)//190 (-0.006 0 0.465)//191 ); blocks ( hex (0 1 2 3 4 5 6 7) (1 200 30) simpleGrading (1 1 1) //-1.04 -> 0.44 hex (12 13 14 15 8 9 10 11) (1 200 30) simpleGrading (1 1 1) hex (3 2 16 17 7 6 18 19) (1 35 30) simpleGrading (1 1 1)//-0.44 -> -0.335 hex (15 14 22 23 11 10 20 21) (1 35 30) simpleGrading (1 1 1) hex (24 3 17 25 26 7 19 27) (5 35 30) simpleGrading (1 1 1) hex (30 15 23 31 28 11 21 29) (5 35 30) simpleGrading (1 1 1) hex (32 33 34 35 36 37 38 39) (7 35 30) simpleGrading (1 1 1) hex (44 45 46 47 40 41 42 43) (7 35 30) simpleGrading (1 1 1) hex (48 32 35 49 50 36 39 51) (3 35 30) simpleGrading (1 1 1) hex (54 44 47 55 52 40 43 53) (3 35 30) simpleGrading (1 1 1) hex (33 24 25 34 37 26 27 38) (1 35 30) simpleGrading (1 1 1) hex (45 30 31 46 41 28 29 42) (1 35 30) simpleGrading (1 1 1) hex (17 16 56 57 19 18 58 59) (1 1 30) simpleGrading (1 1 1)//-0.335 -> -0.332 hex (23 22 62 63 21 20 60 61) (1 1 30) simpleGrading (1 1 1) hex (25 17 57 88 27 19 59 90) (5 1 30) simpleGrading (1 1 1) hex (31 23 63 94 29 21 61 92) (5 1 30) simpleGrading (1 1 1) hex (34 25 88 97 38 27 90 101) (1 1 30) simpleGrading (1 1 1) hex (46 31 94 109 42 29 92 105) (1 1 30) simpleGrading (1 1 1) hex (57 56 72 73 59 58 74 75) (1 6 30) simpleGrading (1 1 1)//-0.332 -> -0.314 hex (63 62 78 79 61 60 76 77) (1 6 30) simpleGrading (1 1 1) hex (88 57 73 89 90 59 75 91) (5 6 30) simpleGrading (1 1 1) hex (94 63 79 95 92 61 77 93) (5 6 30) simpleGrading (1 1 1) hex (96 97 98 99 100 101 102 103) (7 6 30) simpleGrading (1 1 1) hex (108 109 110 111 104 105 106 107) (7 6 30) simpleGrading (1 1 1) hex (112 96 99 113 114 100 103 115) (3 6 30) simpleGrading (1 1 1) hex (118 108 111 119 116 104 107 117) (3 6 30) simpleGrading (1 1 1) hex (97 88 89 98 101 90 91 102 ) (1 6 30) simpleGrading (1 1 1) hex (109 94 95 110 105 92 93 106) (1 6 30) simpleGrading (1 1 1) hex (113 99 120 121 115 103 122 123) (3 125 30) simpleGrading (1 1 1)//-0.314 -> 0.06 hex (119 111 126 127 117 107 124 125) (3 125 30) simpleGrading (1 1 1) hex (128 113 121 129 130 115 123 131) (1 125 30) simpleGrading (1 1 1) hex (134 119 127 135 132 117 125 133) (1 125 30) simpleGrading (1 1 1) hex (98 89 136 137 102 91 138 139) (1 125 30) simpleGrading (1 1 1) hex (110 95 142 143 106 93 140 141) (1 125 30) simpleGrading (1 1 1) hex (99 98 137 120 103 102 139 122 ) (7 125 30) simpleGrading (1 1 1) hex (111 110 143 126 107 106 141 124) (7 125 30) simpleGrading (1 1 1) hex (89 73 144 136 91 75 145 138) (5 125 30) simpleGrading (1 1 1) hex (95 79 147 142 93 77 146 140) (5 125 30) simpleGrading (1 1 1) hex (73 72 148 144 75 74 149 145) (1 125 30) simpleGrading (1 1 1) hex (79 78 151 147 77 76 150 146) (1 125 30) simpleGrading (1 1 1) hex (144 148 152 153 145 149 154 155) (1 64 30) simpleGrading (1 1 1)//0.06 -> 0.252 hex (147 151 158 159 146 150 156 157) (1 64 30) simpleGrading (1 1 1) hex (136 144 153 160 138 145 155 161) (5 64 30) simpleGrading (1 1 1) hex (142 147 159 163 140 146 157 162) (5 64 30) simpleGrading (1 1 1) hex (153 152 164 165 155 154 166 167) (1 71 30) simpleGrading (1 1 1)//0.252 -> 0.465 hex (159 158 170 171 157 156 168 169) (1 71 30) simpleGrading (1 1 1) hex (160 153 165 172 161 155 167 173) (5 71 30) simpleGrading (1 1 1) hex (163 159 171 175 162 157 169 174) (5 71 30) simpleGrading (1 1 1) hex (176 177 178 179 180 181 182 183) (7 71 30) simpleGrading (1 1 1) hex (188 189 190 191 184 185 186 187) (7 71 30) simpleGrading (1 1 1) hex (177 160 172 178 181 161 173 182) (1 71 30) simpleGrading (1 1 1) hex (189 163 175 190 185 162 174 186) (1 71 30) simpleGrading (1 1 1) hex (64 65 66 67 68 69 70 71) (15 125 15) simpleGrading (1 1 1)//Rechteckblock in der Mitte hex (80 128 129 83 64 65 66 67) (15 125 1) simpleGrading (1 1 1)//1. Kreiselement Mitte hex (84 134 135 87 69 68 71 70) (15 125 1) simpleGrading (1 1 1)//2. Kreiselement Mitte hex (132 84 87 133 65 69 70 66) (15 125 1) simpleGrading (1 1 1)//3. Kreiselement Mitte hex (130 80 83 131 68 64 67 71) (15 125 1) simpleGrading (1 1 1)//4. Kreiselement Mitte ); edges ( arc 0 4 (0 0.0196 -1.04) arc 1 5 (0 0.0205 -1.04) arc 2 6 (0 0.0205 -0.44) arc 3 7 (0 0.0196 -0.44) arc 12 8 (0 -0.0196 -1.04) arc 13 9 (0 -0.0205 -1.04) arc 14 10 (0 -0.0205 -0.44) arc 15 11 (0 -0.0196 -0.44) arc 16 18 (0 0.0205 -0.335) arc 17 19 (0 0.0196 -0.335) arc 22 20 (0 -0.0205 -0.335) arc 23 21 (0 -0.0196 -0.335) arc 24 26 (0 0.014 -0.44) arc 25 27 (0 0.014 -0.335) arc 30 28 (0 -0.014 -0.44) arc 31 29 (0 -0.014 -0.335) arc 32 36 (0 0.006 -0.44) arc 33 37 (0 0.013 -0.44) arc 34 38 (0 0.013 -0.335) arc 35 39 (0 0.006 -0.335) arc 44 40 (0 -0.006 -0.44) arc 45 41 (0 -0.013 -0.44) arc 46 42 (0 -0.013 -0.335) arc 47 43 (0 -0.006 -0.335) arc 48 50 (0 0.003 -0.44) arc 49 51 (0 0.003 -0.335) arc 54 52 (0 -0.003 -0.44) arc 55 53 (0 -0.003 -0.335) arc 56 58 (0 0.0205 -0.332) arc 57 59 (0 0.0196 -0.332) arc 62 60 (0 -0.0205 -0.332) arc 63 61 (0 -0.0196 -0.332) arc 25 27 (0 0.014 -0.335) arc 88 90 (0 0.014 -0.332) arc 31 29 (0 -0.014 -0.335) arc 94 92 (0 -0.014 -0.332) arc 34 38 (0 0.013 -0.335) arc 97 101 (0 0.013 -0.332) arc 46 42 (0 -0.013 -0.335) arc 109 105 (0 -0.013 -0.332) arc 72 74 (0 0.0205 -0.314) arc 73 75 (0 0.0196 -0.314) arc 78 76 (0 -0.0205 -0.314) arc 79 77 (0 -0.0196 -0.314) arc 88 90 (0 0.014 -0.332) arc 89 91 (0 0.014 -0.314) arc 94 92 (0 -0.014 -0.332) arc 95 93 (0 -0.014 -0.314) arc 96 100 (0 0.006 -0.332) arc 97 101 (0 0.013 -0.332) arc 98 102 (0 0.013 -0.314) arc 99 103 (0 0.006 -0.314) arc 108 104 (0 -0.006 -0.332) arc 109 105 (0 -0.013 -0.332) arc 110 106 (0 -0.013 -0.314) arc 111 107 (0 -0.006 -0.314) arc 112 114 (0 0.003 -0.332) arc 113 115 (0 0.003 -0.314) arc 118 116 (0 -0.003 -0.332) arc 119 117 (0 -0.003 -0.314) arc 120 122 (0 0.006 0.06) arc 121 123 (0 0.003 0.06) arc 126 124 (0 -0.006 0.06) arc 127 125 (0 -0.003 0.06) arc 128 130 (1.4142e-3 1.4142e-3 -0.314) arc 129 131 (1.4142e-3 1.4142e-3 0.06) arc 134 132 (01.4142e-3 -1.4142e-3 -0.314) arc 135 133 (1.4142e-3 -1.4142e-3 0.06) arc 136 138 (0 0.014 0.06) arc 137 139 (0 0.013 0.06) arc 142 140 (0 -0.014 0.06) arc 143 141 (0 -0.013 0.06) arc 144 145 (0 0.0196 0.06) arc 147 146 (0 -0.0196 0.06) arc 148 149 (0 0.0205 0.06) arc 151 150 (0 -0.0205 0.06) arc 152 154 (0 0.0205 0.252) arc 153 155 (0 0.0196 0.252) arc 158 156 (0 -0.0205 0.252) arc 159 157 (0 -0.0196 0.252) arc 160 161 (0 0.014 0.252) arc 163 162 (0 -0.014 0.252) arc 164 166 (0 0.0205 0.465) arc 165 167 (0 0.0196 0.465) arc 170 168 (0 -0.0205 0.465) arc 171 169 (0 -0.0196 0.465) arc 172 173 (0 0.014 0.465) arc 175 174 (0 -0.014 0.465) arc 176 180 (0 0.006 0.252) arc 177 181 (0 0.013 0.252) arc 178 182 (0 0.013 0.465) arc 179 183 (0 0.006 0.465) arc 188 184 (0 -0.006 0.252) arc 189 185 (0 -0.013 0.252) arc 190 186 (0 -0.013 0.465) arc 191 187 (0 -0.006 0.465) arc 80 128 (1.4142e-3 1.4142e-3 -0.314) arc 129 83 (1.4142e-3 1.4142e-3 0.06) arc 84 134 (-1.4142e-3 -1.4142e-3 -0.314) arc 135 87 (-1.4142e-3 -1.4142e-3 0.06) arc 84 132 (1.4142e-3 -1.4142e-3 -0.314) arc 133 87 (1.4142e-3 -1.4142e-3 0.06) arc 80 130 (-1.4142e-3 1.4142e-3 -0.314) arc 131 83 (-1.4142e-3 1.4142e-3 0.06) ); boundary ( merge1_1 { type patch; faces ( (0 3 2 1) (4 7 6 5) (3 17 16 2) (7 19 18 6) (24 25 17 3) (26 27 19 7) (32 35 34 33) (36 39 38 37) (48 49 35 32) (50 51 39 36) (33 34 25 24) (37 38 27 26) (17 57 56 16) (19 59 58 18) (25 88 57 17) (27 90 59 19) (34 97 88 25) (38 101 90 27) (57 73 72 56) (59 75 74 58) (88 89 73 57) (90 91 75 59) (96 99 98 97) (100 103 102 101) (112 113 99 96) (114 115 103 100) (97 98 89 88) (101 102 91 90) (113 121 120 99) (115 123 122 103) (128 129 121 113) (130 131 123 115) (98 137 136 89) (102 139 138 91) (99 120 137 98) (103 122 139 102) (89 136 144 73) (91 138 145 75) (73 144 148 72) (75 145 149 74) (144 153 152 148) (145 155 154 149) (136 160 153 144) (138 161 155 145) (153 165 164 152) (155 167 166 154) (160 172 165 153) (161 173 167 155) (176 179 178 177) (180 183 182 181) (177 178 172 160) (181 182 173 161) ); } merge1_2 { type patch; faces ( (8 9 10 11) (12 13 14 15) (11 10 20 21) (15 14 22 23) (28 11 21 29) (30 15 23 31) (40 41 42 43) (44 45 46 47) (52 40 43 53) (54 44 47 55) (41 28 29 42) (45 30 31 46) (21 20 60 61) (23 22 62 63) (29 21 61 92) (31 23 63 94) (42 29 92 105) (46 31 94 109) (61 60 76 77) (63 62 78 79) (92 61 77 93) (94 63 79 95) (104 105 106 107) (108 109 110 111) (116 104 107 117) (118 108 111 119) (105 92 93 106) (109 94 95 110) (117 107 124 125) (119 111 126 127) (132 117 125 133) (134 119 127 135) (106 93 140 141) (110 95 142 143) (107 106 141 124) (111 110 143 126) (93 77 146 140) (95 79 147 142) (77 76 150 146) (79 78 151 147) (146 150 156 157) (147 151 158 159) (140 146 157 162) (142 147 159 163) (157 156 168 169) (159 158 170 171) (162 157 169 174) (163 159 171 175) (184 185 186 187) (188 189 190 191) (185 162 174 186) (189 163 175 190) ); } merge2_1 { type patch; faces ( (80 83 129 128) //+ (130 131 83 80) //+ (84 87 135 134) //- (84 87 133 132) //- ); } merge2_2 { type patch; faces ( (128 129 131 130) //+ (134 135 133 132) //- ); } ); mergePatchPairs ( (merge1_1 merge1_2) // (merge2_1 merge2_2) ); // ************************************************************************* // |
|
August 5, 2013, 09:11 |
|
#2 |
Member
Robert
Join Date: Aug 2012
Location: Berlin
Posts: 74
Rep Power: 14 |
Hi everyone,
after a weekend of PAIN I finally fixed it by myself: Most important: the right vertex order in block definition. Make sure you go in x-Direction from vertex 0 to vertex 1, in y-Direction from 1 to 2 and in z-Direction from 0 to 4 - for each and every block you're defining. Then I was able to merge all patches but the last 2. There I used stitchMesh -perfect -overwrite <master> <slave> and finally received my single-region mesh without internal patches. Maybe this is useful for someone. Best regards, Robert |
|
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
[blockMesh] Why aren't arcs showing in this mesh? | Thewitness | OpenFOAM Meshing & Mesh Conversion | 4 | September 13, 2017 03:07 |
simple mesh with arcs | mikemech | OpenFOAM | 1 | May 9, 2011 04:47 |
[blockMesh] Axisymmetric blockMesh error. Are Arcs needed? | andygdl | OpenFOAM Meshing & Mesh Conversion | 0 | November 2, 2010 12:25 |
[Technical] BlockMesh not making arcs | Disco_Caine | OpenFOAM Meshing & Mesh Conversion | 3 | July 6, 2010 11:16 |
how to create arcs in fluent | MADHU BABU | FLUENT | 2 | June 2, 2003 09:00 |