|
[Sponsors] |
Conjugate heat transfer, thermal boundary conditions |
|
LinkBack | Thread Tools | Search this Thread | Display Modes |
April 7, 2010, 06:31 |
Conjugate heat transfer, thermal boundary conditions
|
#1 |
New Member
Join Date: Apr 2010
Posts: 5
Rep Power: 16 |
Dear all,
I am fairly new to CFD, I hope the description of my problem is clear. I am using Fluent (Ansys 12). My model is a room with dimensions 3.9x4.75x2.7m. At opposite sides of the room there is one inlet (average velocity 0.075 m/s) and one oulet (average velocity 0.28 m/s). The air coming into the room has a temperature of 289 K, also used as backflow temperature at the outlet. I want to model the air flow pattern in the room, and the convective heat transfer at the surfaces. I also want to know the resulting temperature gradients over the surfaces and take into account the influence of the thermal mass of the walls, ceiling and floor. For this, I use shell conduction for all the walls, ceiling and floor with user-defined material and thicknesses of 0.1 to 0.2 m. As an external boundary condition I have to take either constant temperature or constant heat flux (other boundary conditions assume zero wall thickness). Now I have three questions: - Is it correct to use shell conduction in this situation? The main references I find where shell conduction is used, are for very thin structures as the fins in heat exchangers, not for heavy walls. - To choose a temperature boundary condition at the inner side of the shell (so the side away from the flow domain), ideally, I would like to use the wall temperatures calculated by Fluent in the following way, to approximate adjacent identical rooms: -> to assign the surface temperature of the floor to the inner side of the shell of the ceiling -> to assign the surface temperature of the ceiling to the inner side of the shell of the floor -> for the walls, I can simply couple the two sides of the walls -> one of the walls is facing the exterior environment, so a constant temperature of 289K can be assigned Do I need a UDF for this, or can I do this in Fluent directly? Is this a sufficient boundary information to solve the flow? - Is this a steady-state problem? I am including buoyancy in my model, and am having trouble to make it converge. I make a first approximation by reducing the gravity to 0.098 and first order scheme. This simulation runs smoothly to convergence and results are nice symmetric. If, as recommended by the Fluent manual, I continue the calculation with normal gravity, the residuals get stuck and start oscillating around a certain value. I wonder of I may need a transient simulation? Thanks for any help! Sarah PhD-student, KULeuven |
|
April 7, 2010, 08:20 |
|
#2 |
New Member
Join Date: Dec 2009
Posts: 13
Rep Power: 17 |
One quick idea as per convergence issues:
You could step up gravity to 0.981, then to 9.81. Also, try lowering the inlet flows (maybe 50%?) and stepping those up as you get converged solutions. |
|
Tags |
boundary conditions, boussinesq, conjugate heat transfer, transient |
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
Implementation of boundary conditions for FVM | Tom | Main CFD Forum | 7 | August 26, 2014 06:58 |
RPM in Wind Turbine | Pankaj | CFX | 9 | November 23, 2009 05:05 |
adiabatic wall boundary of conjugate heat transfer | tomosada | Siemens | 1 | May 13, 2005 01:14 |
Heat Transfer & Boundary Conditions across 2D wall | SAAD | Main CFD Forum | 6 | March 13, 2005 13:42 |
Boundary conditions? | Tom | Main CFD Forum | 0 | November 5, 2002 02:54 |