|
[Sponsors] |
June 10, 2001, 04:40 |
EULER-Forward-Method
|
#1 |
Guest
Posts: n/a
|
I am a stupid student looking out for help. The task is: Draw up a computerprogram in a programming language of your choice (delphi, fortran,...) by which you will be able to analyse the mistakes and stability of an wearing off process. Given is the equation: du/dt=d2u/du2 (2 means square) Please use for the discretization the explicit Euler-Forward-method. The distribution of the beginning looks like a sine oscillation. The abscissa is standardized: x0=0 x1=1 The locas increment is dx=0,002. By using the following increments in time examine the stability of calculation. increment in time dt : dt/(dx)^2 ---------------------------------------- 0,000002 : 0,5 2,0004E-6 : 0,5001 2,004E-6 : 0,501 2,04E-6 : 0,51 1,96E-6 : 0,49 1,8E-6 : 0,45 1,6E-6 : 0,4 0,8E-6 : 0,2 0,4E-6 : 0,1
Give a statement about the precision resp. the number of itterations to reach a mistake less than 0,000001. Depict (graphical) the trend of the mistake in dependence on the number of itterations in a loarithmic coordinate system for the cases listed in the table ahead specialy for x=1/4. Depict the results of the calculation. Please help me with this problem. It would be nice if anyone is able to send me a program source code for the Euler-Forward-method. Or please tell me an good webpage where I can find somthing to solve my problem. Thanx!!! |
|
June 10, 2001, 15:23 |
Re: EULER-Forward-Method
|
#2 |
Guest
Posts: n/a
|
(1). Read the book,"Applied Numerical Methods", by Brice Carnahan, H.A. Luther, and James O. Wilkes. (2).Chapter 7, Approximation of the solution of partial differential equations. (methods, Fortran codes included)
|
|
June 11, 2001, 20:12 |
Re: EULER-Forward-Method
|
#3 |
Guest
Posts: n/a
|
Here you go.
SUBROUTINE EULER(A,B,M,MBDCND,BDA,BDB,C,D,N,NBDCND,BDC,BDD, 1 ELMBDA,F,IDIMF,PERTRB,IERROR,W) DIMENSION F(IDIMF,1) DIMENSION BDA(1) ,BDB(1) ,BDC(1) ,BDD(1) , 1 W(1) C C CHECK FOR INVALID PARAMETERS. C IERROR = 0 IF (A .LT. 0.) IERROR = 1 IF (A .GE. B) IERROR = 2 IF (MBDCND.LE.0 .OR. MBDCND.GE.7) IERROR = 3 IF (C .GE. D) IERROR = 4 IF (N .LE. 3) IERROR = 5 IF (NBDCND.LE.-1 .OR. NBDCND.GE.5) IERROR = 6 IF (A.EQ.0. .AND. (MBDCND.EQ.3 .OR. MBDCND.EQ.4)) IERROR = 7 IF (A.GT.0. .AND. MBDCND.GE.5) IERROR = 8 IF (MBDCND.GE.5 .AND. NBDCND.NE.0 .AND. NBDCND.NE.3) IERROR = 9 IF (IDIMF .LT. M+1) IERROR = 10 IF (M .LE. 3) IERROR = 12 IF (IERROR .NE. 0) RETURN MP1 = M+1 DELTAR = (B-A)/FLOAT(M) DLRBY2 = DELTAR/2. DLRSQ = DELTAR**2 NP1 = N+1 DELTHT = (D-C)/FLOAT(N) DLTHSQ = DELTHT**2 NP = NBDCND+1 C C DEFINE RANGE OF INDICES I AND J FOR UNKNOWNS U(I,J). C MSTART = 2 MSTOP = MP1 GO TO (101,105,102,103,104,105),MBDCND 101 MSTOP = M GO TO 105 102 MSTART = 1 GO TO 105 103 MSTART = 1 104 MSTOP = M 105 MUNK = MSTOP-MSTART+1 NSTART = 1 NSTOP = N GO TO (109,106,107,108,109),NP 106 NSTART = 2 GO TO 109 107 NSTART = 2 108 NSTOP = NP1 109 NUNK = NSTOP-NSTART+1 C C DEFINE A,B,C COEFFICIENTS IN W-ARRAY. C ID2 = MUNK ID3 = ID2+MUNK ID4 = ID3+MUNK ID5 = ID4+MUNK ID6 = ID5+MUNK A1 = 2./DLRSQ IJ = 0 IF (MBDCND.EQ.3 .OR. MBDCND.EQ.4) IJ = 1 DO 110 I=1,MUNK R = A+FLOAT(I-IJ)*DELTAR J = ID5+I W(J) = R J = ID6+I W(J) = 1./R**2 W(I) = (R-DLRBY2)/(R*DLRSQ) J = ID3+I W(J) = (R+DLRBY2)/(R*DLRSQ) J = ID2+I W(J) = -A1+ELMBDA 110 CONTINUE GO TO (114,111,112,113,114,111),MBDCND 111 W(ID2) = A1 GO TO 114 112 W(ID2) = A1 113 W(ID3+1) = A1 114 CONTINUE C C ENTER BOUNDARY DATA FOR R-BOUNDARIES. C GO TO (115,115,117,117,119,119),MBDCND 115 A1 = W(1) DO 116 J=NSTART,NSTOP F(2,J) = F(2,J)-A1*F(1,J) 116 CONTINUE GO TO 119 117 A1 = 2.*DELTAR*W(1) DO 118 J=NSTART,NSTOP F(1,J) = F(1,J)+A1*BDA(J) 118 CONTINUE 119 GO TO (120,122,122,120,120,122),MBDCND 120 A1 = W(ID4) DO 121 J=NSTART,NSTOP F(M,J) = F(M,J)-A1*F(MP1,J) 121 CONTINUE GO TO 124 122 A1 = 2.*DELTAR*W(ID4) DO 123 J=NSTART,NSTOP F(MP1,J) = F(MP1,J)-A1*BDB(J) 123 CONTINUE C C ENTER BOUNDARY DATA FOR THETA-BOUNDARIES. C 124 A1 = 1./DLTHSQ L = ID5-MSTART+1 LP = ID6-MSTART+1 GO TO (134,125,125,127,127),NP 125 DO 126 I=MSTART,MSTOP J = I+LP F(I,2) = F(I,2)-A1*W(J)*F(I,1) 126 CONTINUE GO TO 129 127 A1 = 2./DELTHT DO 128 I=MSTART,MSTOP J = I+LP F(I,1) = F(I,1)+A1*W(J)*BDC(I) 128 CONTINUE 129 A1 = 1./DLTHSQ GO TO (134,130,132,132,130),NP 130 DO 131 I=MSTART,MSTOP J = I+LP F(I,N) = F(I,N)-A1*W(J)*F(I,NP1) 131 CONTINUE GO TO 134 132 A1 = 2./DELTHT DO 133 I=MSTART,MSTOP J = I+LP F(I,NP1) = F(I,NP1)-A1*W(J)*BDD(I) 133 CONTINUE 134 CONTINUE C C ADJUST RIGHT SIDE OF EQUATION FOR UNKNOWN AT POLE WHEN HAVE C DERIVATIVE SPECIFIED BOUNDARY CONDITIONS. C IF (MBDCND.GE.5 .AND. NBDCND.EQ.3) 1 F(1,1) = F(1,1)-(BDD(2)-BDC(2))*4./(FLOAT(N)*DELTHT*DLRSQ) C C ADJUST RIGHT SIDE OF SINGULAR PROBLEMS TO INSURE EXISTENCE OF A C SOLUTION. C PERTRB = 0. IF (ELMBDA) 144,136,135 135 IERROR = 11 GO TO 144 136 IF (NBDCND.NE.0 .AND. NBDCND.NE.3) GO TO 144 S2 = 0. GO TO (144,144,137,144,144,138),MBDCND 137 W(ID5+1) = .5*(W(ID5+2)-DLRBY2) S2 = .25*DELTAR 138 A2 = 2. IF (NBDCND .EQ. 0) A2 = 1. J = ID5+MUNK W(J) = .5*(W(J-1)+DLRBY2) S = 0. DO 140 I=MSTART,MSTOP S1 = 0. IJ = NSTART+1 K = NSTOP-1 DO 139 J=IJ,K S1 = S1+F(I,J) 139 CONTINUE J = I+L S = S+(A2*S1+F(I,NSTART)+F(I,NSTOP))*W(J) 140 CONTINUE S2 = FLOAT(M)*A+DELTAR*(FLOAT((M-1)*(M+1))*.5+.25)+S2 S1 = (2.+A2*FLOAT(NUNK-2))*S2 IF (MBDCND .EQ. 3) GO TO 141 S2 = FLOAT(N)*A2*DELTAR/8. S = S+F(1,1)*S2 S1 = S1+S2 141 CONTINUE PERTRB = S/S1 DO 143 I=MSTART,MSTOP DO 142 J=NSTART,NSTOP F(I,J) = F(I,J)-PERTRB 142 CONTINUE 143 CONTINUE 144 CONTINUE C C MULTIPLY I-TH EQUATION THROUGH BY (R(I)*DELTHT)**2. C DO 146 I=MSTART,MSTOP K = I-MSTART+1 J = I+LP A1 = DLTHSQ/W(J) W(K) = A1*W(K) J = ID2+K W(J) = A1*W(J) J = ID3+K W(J) = A1*W(J) DO 145 J=NSTART,NSTOP F(I,J) = A1*F(I,J) 145 CONTINUE 146 CONTINUE W(1) = 0. W(ID4) = 0. C C CALL GENBUN TO SOLVE THE SYSTEM OF EQUATIONS. C CALL GENBUN (NBDCND,NUNK,1,MUNK,W(1),W(ID2+1),W(ID3+1),IDIMF, 1 F(MSTART,NSTART),IERR1,W(ID4+1)) IWSTOR = W(ID4+1)+3.*FLOAT(MUNK) GO TO (157,157,157,157,148,147),MBDCND C C ADJUST THE SOLUTION AS NECESSARY FOR THE PROBLEMS WHERE A = 0. C 147 IF (ELMBDA .NE. 0.) GO TO 148 YPOLE = 0. GO TO 155 148 CONTINUE J = ID5+MUNK W(J) = W(ID2)/W(ID3) DO 149 IP=3,MUNK I = MUNK-IP+2 J = ID5+I LP = ID2+I K = ID3+I W(J) = W(I)/(W(LP)-W(K)*W(J+1)) 149 CONTINUE W(ID5+1) = -.5*DLTHSQ/(W(ID2+1)-W(ID3+1)*W(ID5+2)) DO 150 I=2,MUNK J = ID5+I W(J) = -W(J)*W(J-1) 150 CONTINUE S = 0. DO 151 J=NSTART,NSTOP S = S+F(2,J) 151 CONTINUE A2 = NUNK IF (NBDCND .EQ. 0) GO TO 152 S = S-.5*(F(2,NSTART)+F(2,NSTOP)) A2 = A2-1. 152 YPOLE = (.25*DLRSQ*F(1,1)-S/A2)/(W(ID5+1)-1.+ELMBDA*DLRSQ*.25) DO 154 I=MSTART,MSTOP K = L+I DO 153 J=NSTART,NSTOP F(I,J) = F(I,J)+YPOLE*W(K) 153 CONTINUE 154 CONTINUE 155 DO 156 J=1,NP1 F(1,J) = YPOLE 156 CONTINUE 157 CONTINUE IF (NBDCND .NE. 0) GO TO 159 DO 158 I=MSTART,MSTOP F(I,NP1) = F(I,1) 158 CONTINUE 159 CONTINUE W(1) = IWSTOR RETURN END |
|
June 12, 2001, 02:22 |
Re: EULER-Forward-Method
|
#4 |
Guest
Posts: n/a
|
tahnx for answering, but i can not refer the variables. that kind of programing language is it?
|
|
June 12, 2001, 10:19 |
Re: EULER-Forward-Method
|
#5 |
Guest
Posts: n/a
|
ax++ version 3.125
|
|
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
[swak4Foam] GroovyBC the dynamic cousin of funkySetFields that lives on the suburb of the mesh | gschaider | OpenFOAM Community Contributions | 300 | October 29, 2014 19:00 |
population balance with and Euler Euler method. | thomas | CFX | 3 | August 30, 2011 20:20 |
population balance with and Euler Euler method. | thomas | Main CFD Forum | 0 | May 7, 2004 08:58 |
population balance with and Euler Euler method. | thomas | FLUENT | 0 | May 7, 2004 08:57 |
Unstructured Multigrid Method for Euler equations | Jian Xia | Main CFD Forum | 8 | December 20, 1999 13:31 |