|
[Sponsors] |
November 3, 2016, 23:44 |
Airfoil Validation Concern
|
#1 |
New Member
Ben
Join Date: May 2016
Posts: 9
Rep Power: 10 |
Hello all,
I've been trying to validate my numerical scheme for my research project using the "Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections Through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines" paper by Sheldahl and Klimas: http://www.osti.gov/scitech/servlets/purl/6548367/ However, I can only get my lift coefficient angle of attack curves to line up for so much of the curves as shown in the curves here: My research project follows on from Gawad's work (http://www.tsest.org/index.php/TCMS/article/view/158), who managed to achieve the validation I'm trying to sort out. Is there something inherently wrong with the data, or is there something wrong with my simulation parameters? Below are my case files, sorry if this post has become quite long-winded, this is my first post! Thanks guys! Code:
/*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 3.0.1 | | \\ / A nd | Web: www.OpenFOAM.org | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class volScalarField; location "0"; object epsilon; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // dimensions [0 2 -3 0 0 0 0]; // epsilon = 4.5E-5 U^3/c = 4.5E-5 25^3/1 = 0.703125 //****** Re = 700,000 // PREV CALCULATIONS // L is the characteristic length (as per Reynolds number calculations, i.e. airfoil chord length in this case) // From calculations in k case file, k = 0.603552 // epsilon = 0.164k^1.5 / 0.07L = 0.164*(0.603552^1.5)/(0.07*1) = 1.098544 internalField uniform 1.0655; boundaryField { inlet { type fixedValue; value uniform 1.0655; } outlet { type zeroGradient; } top { type fixedValue; value uniform 1.0655; } bottom { type fixedValue; value uniform 1.0655; } final_validation { type epsilonWallFunction; value uniform 1.0655; } #include "include/frontBackPatches" } // ************************************************************************* // Code:
/*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 3.0.1 | | \\ / A nd | Web: www.OpenFOAM.org | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class volScalarField; object k; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // k = 10^-4 U^2 = 10^-4 25^2 = 0.0625 // *** Re = 700,000 // PREVIOUS CALCS // Re = U_ref*D/v = 25*1/(1 E-05) = 2,500,000 // turbulence intensity, I = 0.16* Re^(-1/8) = 0.16*(2,500,000)^(-1/8) = 0.025373 (6 dp) // k = 3/2*(U_ref*I)^2 = 3/2*(100*0.028453)^2 = 0.603552 (6 dp) dimensions [0 2 -2 0 0 0 0]; internalField uniform 6.8426; boundaryField { inlet { type fixedValue; value uniform 6.8426; } outlet { type zeroGradient; } top { type fixedValue; value uniform 6.8426; } bottom { type fixedValue; value uniform 6.8426; } final_validation { type kqRWallFunction; value uniform 6.8426; } #include "include/frontBackPatches" } // ************************************************************************* // Code:
/*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 3.0.1 | | \\ / A nd | Web: www.OpenFOAM.org | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class volScalarField; location "0"; object nut; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // dimensions [0 2 -1 0 0 0 0]; internalField uniform 0; // copied from motorbike case (uses S-A, not k-e, but originally 0.14) boundaryField { inlet { type calculated; value uniform 0; } outlet { type calculated; value uniform 0; } top { type calculated; value uniform 0; } bottom { type calculated; value uniform 0; } final_validation { type nutkWallFunction; value uniform 0; } #include "include/frontBackPatches" } // ************************************************************************* // Code:
/*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 3.0.1 | | \\ / A nd | Web: www.OpenFOAM.org | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class volScalarField; object p; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // dimensions [0 2 -2 0 0 0 0]; internalField uniform 0; boundaryField { inlet { type zeroGradient; } outlet { type fixedValue; value uniform 0; } top { type zeroGradient; } bottom { type zeroGradient; } final_validation { type zeroGradient; } #include "include/frontBackPatches" } // ************************************************************************* // Code:
/*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 3.0.1 | | \\ / A nd | Web: www.OpenFOAM.org | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class volVectorField; object U; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // dimensions [0 1 -1 0 0 0 0]; internalField uniform (0 0 0); //initial internal velocity // wing travelling at 71.1943 m/s in the x direction at Re = 700,000 boundaryField { inlet { type fixedValue; value uniform (71.1943 0 0); } outlet { type zeroGradient; } top { type fixedValue; value uniform (0 0 0); } bottom { type fixedValue; value uniform (0 0 0); } final_validation { type fixedValue; value uniform (0 0 0); } #include "include/frontBackPatches" } // ************************************************************************* // |
|
November 4, 2016, 01:45 |
|
#2 |
Senior Member
Arjun
Join Date: Mar 2009
Location: Nurenberg, Germany
Posts: 1,291
Rep Power: 35 |
can't help you much but make sure you first get the results with same version. Things can sometimes change drastically between versions.
So to start i would just make sure that i get the same results on both versions, that is the one he used and current one. |
|
November 5, 2016, 01:36 |
|
#3 |
New Member
Ben
Join Date: May 2016
Posts: 9
Rep Power: 10 |
Not sure why the images didn't come up but here are my lift coefficient angle of attack curves, and Gawad's for comparison:
Gawad (kEpsilon) http://imgur.com/FFHPhaM kOmegaSST: http://imgur.com/cEmZOBe kEpsilon: http://imgur.com/dyUVS0E Forgot to attach a picture of the mesh so attached is one below. For reference, the chord length, C is 152.4 mm (6 inch) with the a span length of 4C. The box dimensions are 8C long, 4C high, 4C wide. The image below is a slice as the rectangular box nature of the mesh makes it harder to visualise: overall domain http://imgur.com/DjQ8jFa close up of airfoil http://imgur.com/KFKk0eK snappHexMexDict Code:
/*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 3.0.1 | | \\ / A nd | Web: www.OpenFOAM.org | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class dictionary; object snappyHexMeshDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // Which of the steps to run castellatedMesh true; snap true; addLayers false; // Geometry. Definition of all surfaces. All surfaces are of class // searchableSurface. // Surfaces are used // - to specify refinement for any mesh cell intersecting it // - to specify refinement for any mesh cell inside/outside/near // - to 'snap' the mesh boundary to the surface geometry { final_validation.stl { type triSurfaceMesh; name final_validation; } /*refinementBox_1 { type searchableBox; min (-0.09 -0.15 0.0); //1 cell to the left max (0.7 0.12 0.9144); //twice the chord length to the right } refinementBox_2 { type searchableBox; min (-0.06 -0.12 0.0); //1 cell to the left max ( 0.65 0.09 0.9144); //twice the chord length to the right } refinementBox_3 { type searchableBox; min (-0.03 -0.09 0.0); //1 cell to the left max ( 0.6 0.06 0.9144); //twice the chord length to the right }*/ refinementBox_1 { type searchableBox; min (-0.4572 -0.3048 0.0); //1 cell to the left max (0.762 0.3048 0.6096); //twice the chord length to the right } refinementBox_2 { type searchableBox; min (-0.36 -0.24 0.0); //1 cell to the left max ( 0.74 0.24 0.6096); //twice the chord length to the right } refinementBox_3 { type searchableBox; min (-0.24 -0.18 0.0); //1 cell to the left max ( 0.7 0.18 0.6096); //twice the chord length to the right } }; // Settings for the castellatedMesph generation. castellatedMeshControls { // Refinement parameters // ~~~~~~~~~~~~~~~~~~~~~ // If local number of cells is >= maxLocalCells on any processor // switches from from refinement followed by balancing // (current method) to (weighted) balancing before refinement. maxLocalCells 10000000; // Overall cell limit (approximately). Refinement will stop immediately // upon reaching this number so a refinement level might not complete. // Note that this is the number of cells before removing the part which // is not 'visible' from the keepPoint. The final number of cells might // actually be a lot less. maxGlobalCells 200000000; // The surface refinement loop might spend lots of iterations refining just a // few cells. This setting will cause refinement to stop if <= minimumRefine // are selected for refinement. Note: it will at least do one iteration // (unless the number of cells to refine is 0) minRefinementCells 10; // Allow a certain level of imbalance during refining // (since balancing is quite expensive) // Expressed as fraction of perfect balance (= overall number of cells / // nProcs). 0=balance always. maxLoadUnbalance 0.10; // Number of buffer layers between different levels. // 1 means normal 2:1 refinement restriction, larger means slower // refinement. nCellsBetweenLevels 3; // Explicit feature edge refinement // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies a level for any cell intersected by its edges. // This is a featureEdgeMesh, read from constant/triSurface for now. features ( {file "final_validation.eMesh"; level 5;} ); // Surface based refinement // ~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies two levels for every surface. The first is the minimum level, // every cell intersecting a surface gets refined up to the minimum level. // The second level is the maximum level. Cells that 'see' multiple // intersections where the intersections make an // angle > resolveFeatureAngle get refined up to the maximum level. refinementSurfaces { final_validation { // Surface-wise min and max refinement level level (5 5); // Optional specification of patch type (default is wall). No // constraint types (cyclic, symmetry) etc. are allowed. } } // Resolve sharp angles resolveFeatureAngle 80; //was 30 by default // Region-wise refinement // ~~~~~~~~~~~~~~~~~~~~~~ // Specifies refinement level for cells in relation to a surface. One of // three modes // - distance. 'levels' specifies per distance to the surface the // wanted refinement level. The distances need to be specified in // descending order. // - inside. 'levels' is only one entry and only the level is used. All // cells inside the surface get refined up to the level. The surface // needs to be closed for this to be possible. // - outside. Same but cells outside. refinementRegions { refinementBox_1 { mode inside; levels ((1.0 1)); } refinementBox_2 { mode inside; levels ((1.0 2)); } refinementBox_3 { mode inside; levels ((1.0 3)); } } // Mesh selection // ~~~~~~~~~~~~~~ // After refinement patches get added for all refinementSurfaces and // all cells intersecting the surfaces get put into these patches. The // section reachable from the locationInMesh is kept. // NOTE: This point should never be on a face, always inside a cell, even // after refinement. locationInMesh (-0.001 -0.001 0.001); // Whether any faceZones (as specified in the refinementSurfaces) // are only on the boundary of corresponding cellZones or also allow // free-standing zone faces. Not used if there are no faceZones. allowFreeStandingZoneFaces true; } // Settings for the snapping. snapControls { //- Number of patch smoothing iterations before finding correspondence // to surface nSmoothPatch 3; //- Relative distance for points to be attracted by surface feature point // or edge. True distance is this factor times local // maximum edge length. tolerance 2.0; //- Number of mesh displacement relaxation iterations. nSolveIter 30; //- Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 5; // Feature snapping //- Number of feature edge snapping iterations. // Leave out altogether to disable. nFeatureSnapIter 10; //- Detect (geometric only) features by sampling the surface // (default=false). implicitFeatureSnap false; //- Use castellatedMeshControls::features (default = true) explicitFeatureSnap true; //- Detect points on multiple surfaces (only for explicitFeatureSnap) multiRegionFeatureSnap false; } // Settings for the layer addition. addLayersControls { // Are the thickness parameters below relative to the undistorted // size of the refined cell outside layer (true) or absolute sizes (false). relativeSizes false; // Per final patch (so not geometry!) the layer information layers { final_validation.stl { nSurfaceLayers 10; } } // Expansion factor for layer mesh expansionRatio 1.3; // Wanted thickness of final added cell layer. If multiple layers // is the thickness of the layer furthest away from the wall. // Relative to undistorted size of cell outside layer. // See relativeSizes parameter. finalLayerThickness 0.01524; // Minimum thickness of cell layer. If for any reason layer // cannot be above minThickness do not add layer. // Relative to undistorted size of cell outside layer. minThickness 0.00015; // If points get not extruded do nGrow layers of connected faces that are // also not grown. This helps convergence of the layer addition process // close to features. // Note: changed(corrected) w.r.t 17x! (didn't do anything in 17x) nGrow 0; // Advanced settings // When not to extrude surface. 0 is flat surface, 90 is when two faces // are perpendicular featureAngle 60; // At non-patched sides allow mesh to slip if extrusion direction makes // angle larger than slipFeatureAngle. slipFeatureAngle 30; // Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 3; // Number of smoothing iterations of surface normals nSmoothSurfaceNormals 1; // Number of smoothing iterations of interior mesh movement direction nSmoothNormals 3; // Smooth layer thickness over surface patches nSmoothThickness 10; // Stop layer growth on highly warped cells maxFaceThicknessRatio 0.5; // Reduce layer growth where ratio thickness to medial // distance is large maxThicknessToMedialRatio 0.3; // Angle used to pick up medial axis points // Note: changed(corrected) w.r.t 17x! 90 degrees corresponds to 130 in 17x. minMedianAxisAngle 90; // Create buffer region for new layer terminations nBufferCellsNoExtrude 0; // Overall max number of layer addition iterations. The mesher will exit // if it reaches this number of iterations; possibly with an illegal // mesh. nLayerIter 50; } // Generic mesh quality settings. At any undoable phase these determine // where to undo. meshQualityControls { #include "meshQualityDict" // Advanced //- Number of error distribution iterations nSmoothScale 4; //- Amount to scale back displacement at error points errorReduction 0.75; } // Advanced // Write flags writeFlags ( scalarLevels layerSets layerFields // write volScalarField for layer coverage ); // Merge tolerance. Is fraction of overall bounding box of initial mesh. // Note: the write tolerance needs to be higher than this. mergeTolerance 1e-6; // ************************************************************************* // fvSchemes Code:
/*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 4.1 | | \\ / A nd | Web: www.OpenFOAM.org | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class dictionary; object fvSchemes; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // ddtSchemes { default steadyState; } gradSchemes { default Gauss linear; grad(U) cellLimited Gauss linear 1; } divSchemes { default none; div(phi,U) bounded Gauss linearUpwindV grad(U); div(phi,k) bounded Gauss upwind; div(phi,epsilon) bounded Gauss upwind; div((nuEff*dev2(T(grad(U))))) Gauss linear; } laplacianSchemes { default Gauss linear corrected; } interpolationSchemes { default linear; } snGradSchemes { default corrected; } wallDist { method meshWave; } // ************************************************************************* // Code:
/*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 4.1 | | \\ / A nd | Web: www.OpenFOAM.org | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class dictionary; object fvSolution; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // solvers { p { solver GAMG; tolerance 1e-7; relTol 0.01; smoother GaussSeidel; } U { solver smoothSolver; smoother GaussSeidel; tolerance 1e-8; relTol 0.1; nSweeps 1; } k { solver smoothSolver; smoother GaussSeidel; tolerance 1e-8; relTol 0.1; nSweeps 1; } epsilon { solver smoothSolver; smoother GaussSeidel; tolerance 1e-8; relTol 0.1; nSweeps 1; } } SIMPLE { nNonOrthogonalCorrectors 3; consistent yes; } relaxationFactors { equations { U 0.9; k 0.9; epsilon 0.9; } } cache { grad(U); } // ************************************************************************* // Code:
/*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 3.0.1 | | \\ / A nd | Web: www.OpenFOAM.org | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class dictionary; location "system"; object controlDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // libs ( "libOpenFOAM.so" "libincompressibleTurbulenceModel.so" "libincompressibleRASModels.so" ); application simpleFoam; startFrom latestTime; startTime 0; stopAt endTime; endTime 10000; deltaT 1; writeControl timeStep; writeInterval 1000; purgeWrite 0; writeFormat ascii; writePrecision 6; writeCompression off; timeFormat general; timePrecision 6; runTimeModifiable true; functions { #include "forceCoeffs" } // ************************************************************************* // |
|
November 5, 2016, 02:01 |
|
#4 |
New Member
Ben
Join Date: May 2016
Posts: 9
Rep Power: 10 |
Thank you very much for the response Arjun, I'm sorry but I don't think I quite understand what you mean by versions, do you mean comparing his simulation to mine?
Cheers, Ben |
|
January 9, 2017, 05:50 |
|
#5 |
New Member
Ben
Join Date: May 2016
Posts: 9
Rep Power: 10 |
After A LOT of mesh mainpulation, I've managed to get a decent validation going on with the k Omega SST model: http://imgur.com/MWvnH4Z
An example of how the residuals look like is as follows: http://imgur.com/O9nCHP1 The residuals seem okay asides from the pressure one which in spite of going down, heavily fluctuates; this I'm unsure how to remedy. Pressure residual aside, could there be anything else causing the model to over-predict the lift coefficients past the actual stall point? Thanks! |
|
Tags |
airfoil, kepsilon, klimas, sheldahl, validation |
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
SU2 AOA optimization | 454514566@qq.com | SU2 | 9 | March 7, 2022 17:17 |
Ffd_control_point_2d | feiyi | SU2 | 4 | September 30, 2019 13:42 |
High drag for airfoil compared to XFOIL and wind tunnel data | Ry10 | SU2 | 15 | October 30, 2016 18:27 |
2D FFD Optimization | RLangtry | SU2 | 2 | August 5, 2014 10:48 |
Problem with restart solution in shape_optimization.py | robyTKD | SU2 Shape Design | 21 | May 29, 2013 10:26 |