CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > General Forums > Main CFD Forum

Reynolds Stresses in Cylindrical Coordinates

Register Blogs Community New Posts Updated Threads Search

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   February 7, 2009, 14:38
Default Reynolds Stresses in Cylindrical Coordinates
  #1
steve
Guest
 
Posts: n/a
Hello,

I'm struggling with the derivation of the above. I have the 'usual' stress terms (in cartesian coordiantes they are rho u v, essentially), but I'm thinking that there are extra terms. For any one who 'speaks' latex2e, I've the text at the bottom of this post. anyone able to tell me if I am missing something?

Thanks

Steve

\begin{subequations} \begin{multline} \rho \left(\frac{\pa \overline{u_r}}{\pt} + \overline{u_r} \frac{\pa \overline{u_r}}{\pa r} + \frac{\overline{u_{\theta}}}{r} \frac{\pa \overline{u_r}}{\ptheta} + \overline{u_z} \frac{\pa \overline{u_r}}{\pa z} - \frac{\overline{u_{\theta}}^2}{r}\right) =-\frac{\pa p}{\pa r} +\dots\\ \dots+\mu \left[\frac{1}{r}\frac{\pa}{\pr}\left(r \frac{\pa \overline{u_r}}{\pa r}\right) + \frac{1}{r^2}\frac{\pa^2 \overline{u_r}}{\pa \theta^2} + \frac{\pa^2 \overline{u_r}}{\pa z^2} -\frac{\overline{u_r}}{r^2} - \frac{2}{r^2}\frac{\pa \overline{u_{\theta}}}{\pa \theta}\right] + \rho g_r+\frac{\mu}{3}\left(\frac{1}{r}\frac{\pa(r \overline{u_r})}{\pr}\right)-\dots\\ \dots-\rho\frac{\pa}{\pr}\left(\overline{u'_{r}u'_{r}}\r ight)-\frac{\rho}{r}\frac{\pa}{\ptheta} \left(\overline{u'_{r}u'_{\theta}}\right)-\rho\frac{\pa}{\pz}\left(\overline{u'_{r}u'_{z}}\r ight) - \frac{\overline{u'_{\theta}}^2}{r} \end{multline} \begin{multline} \rho \left(\frac{\pa u_{\theta}}{\pa t} + u_r \frac{\pa u_{\theta}}{\pa r} + \frac{u_{\theta}}{r} \frac{\pa u_{\theta}}{\pa \theta} + u_z \frac{\pa u_{\theta}}{\pa z} + \frac{u_r u_{\theta}}{r}\right) =-\frac{1}{r}\frac{\pa p}{\pa \theta} +\dots\\ \dots+\mu \left[\frac{1}{r}\frac{\pa}{\pa r}\left(r \frac{\pa u_{\theta}}{\pa r}\right) + \frac{1}{r^2}\frac{\pa^2 u_{\theta}}{\pa \theta^2} + \frac{\pa^2 u_{\theta}}{\pa z^2} + \frac{2}{r^2}\frac{\pa u_r}{\pa \theta} - \frac{u_{\theta}}{r^2}\right] + \rho g_{\theta}+\frac{\mu}{3}\left(\frac{1}{r}\frac{\pa (u_{\theta})}{\ptheta}\right)-\dots\\ \dots-\rho\frac{\pa}{\pr}\left(\overline{u'_{r}u'_{\thet a}}\right)-\frac{\rho}{r}\frac{\pa}{\ptheta} \left(\overline{u'_{\theta}u'_{\theta}}\right)-\rho\frac{\pa}{\pz}\left(\overline{u'_{\theta}u'_{ z}}\right) + \frac{\overline{u'_{r}u'_{\theta}}}{r} \end{multline} \begin{multline} \rho \left(\frac{\pa u_z}{\pa t} + u_r \frac{\pa u_z}{\pa r} + \frac{u_{\theta}}{r} \frac{\pa u_z}{\pa \theta} + u_z \frac{\pa u_z}{\pa z}\right) =-\frac{\pa p}{\pa z} + \dots\\ \dots+\mu \left[\frac{1}{r}\frac{\pa}{\pa r}\left(r \frac{\pa u_z}{\pa r}\right) + \frac{1}{r^2}\frac{\pa^2 u_z}{\pa \theta^2} + \frac{\pa^2 u_z}{\pa z^2}\right] + \rho g_z+\frac{\mu}{3}\left(\frac{\pa(u_{z})}{\pz}\righ t)-\dots\\ \dots-\rho\frac{\pa}{\pr}\left(\overline{u'_{r}u'_{z}}\r ight)-\frac{\rho}{r}\frac{\pa}{\ptheta} \left(\overline{u'_{\theta}u'_{z}}\right)-\rho\frac{\pa}{\pz}\left(\overline{u'_{z}u'_{z}}\r ight) \end{multline}\label{navier-stokes-rs} \end{subequations}
  Reply With Quote

Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Finite Volume Method For Cylindrical Coordinates falopsy Main CFD Forum 45 August 14, 2023 22:14
Scaling the Reynolds stresses via UDF Markus FLUENT 1 November 11, 2022 13:44
Reynolds stresses without velocity correlations? Phil Main CFD Forum 1 October 2, 2006 05:29
Reynolds stresses and second law JF Main CFD Forum 6 June 2, 2005 23:57
Calculation in cylindrical coordinates Franz Wingelhofer CFX 0 December 28, 1999 08:46


All times are GMT -4. The time now is 20:15.