|
[Sponsors] |
December 11, 2014, 10:50 |
Boundary Condition for 2D channel flow
|
#1 |
New Member
KS5
Join Date: Mar 2012
Location: US
Posts: 15
Rep Power: 14 |
Hi Everyone,
I have written a 2D cavity flow problem using staggered grid finite volume method with pressure correction and iterative pressure solver I tried to change the boundary condition but always ended up with error Could some please help me to change boundary condition so that the code work as 2D channel Flow with iterative pressure solver. ========================================== %%%%%%%%%%%%%%%%%%%% %%% Finite volume method %%%%%%%%%% %%%% SOR technique for presure %%%% %%%%%%%%%%% Creating the mesh %%%%%%%%% clear all; close all; clc; nx = 10 ; %% number of elements ny = 10 ; %% number of elements L = 1; H = 1; hx = 1/nx; mu = 10^-6 ; dt = 0.005 ; P = zeros(nx+2,ny+2); U = zeros(ny+2,nx+1); V = zeros(ny+1,nx+2); ut = zeros(ny+2,nx+1); vt = zeros(ny+1,nx+2); uu = zeros(ny+1,nx+1); vv = zeros(ny+1,nx+1); w = zeros(ny+1,nx+1); c = zeros(ny+2,nx+2)+ 0.25; c(3:ny,2) = 1/3; % Boundary points c(2,3:nx) = 1/3; c(3:ny,nx+1) = 1/3; c(ny+1,3:ny) = 1/3; c(2,2) =1/2; %corner points c(2,ny+1) =1/2; c(nx+1,2) =1/2; c(nx+1,ny+1) =1/2; time = 0; un = 1; us = 0; ve = 0; vw = 0; beta = 1.2; mu = 0.1 ; for is = 1:100 V(1:ny+1,1)=2*vw-V(1:ny+1,2); V(1:ny+1,nx+2)=2*ve-V(1:ny+1,nx+1); U(1,1:nx+1)=2*us-U(2,1:nx+1); U(ny+2,1:nx+1)=2*un-U(ny+1,1:nx+1); for i = 2:nx for j = 2:ny+1 ut(j,i) = U(j,i) + dt * ( -(0.25/hx) * ( U(j,i+1) + U(j,i) ).^2 ... - ( U(j,i-1) + U(j,i) ).^2 ... + ( U(j+1,i) + U(j,i) ) * ( V(j,i) + V(j,i+1) ) ... - ( U(j-1,i) + U(j,i) ) * ( V(j-1,i) + V(j-1,i+1)) ... + (mu) * (1/hx^2) * ( U(j,i+1) + U(j,i-1) + U(j+1,i) + U(j-1,i) - 4*U(j,i))); end end for i = 2:nx+1 for j = 2:ny vt(j,i) = V(j,i) + dt * ( -(0.25/hx) * ( V(j+1,i) + V(j,i) ).^2 ... - ( V(j-1,i) + V(j,i) ).^2 ... + ( V(j,i+1) + V(j,i) ) * ( U(j+1,i) + U(j,i) ) ... - ( V(j,i-1) + V(j,i) ) * ( U(j,i-1) + U(j+1,i-1) ) ... + (mu) * (1/hx^2) * ( V(j,i+1) + V(j,i-1) + V(j+1,i) + V(j-1,i) - 4*V(j,i))); end end for it=1:100 for i=2:nx+1, for j=2:ny+1 % solve for pressure P(j,i)= beta*c(j,i)... * (P(j,i+1)+P(j,i-1)+P(j+1,i)+P(j-1,i)... -(hx/dt)*(ut(j,i)-ut(j,i-1)+vt(j,i)-vt(j-1,i))) +(1-beta)*P(j,i) ; end end end % P(1,2:nx+1) = P(2,2:nx+1); % Bottom (dp/dy=0) P(ny+2,2:nx+1) = P(ny+1,2:nx+1); % Top (dp/dy=0) P(2:ny+1,1) = P(2:ny+1,2); % Left (dp/dx=0) P(2:ny+1,nx+2) = -P(2:ny+1,nx+1); % correct the velocity U(2:ny+1,2:nx)=... ut(2:ny+1,2:nx)-(dt/hx)*(P(2:ny+1,3:nx+1)-P(2:ny+1,2:nx)); V(2:ny,2:nx+1)=... vt(2:ny,2:nx+1)-(dt/hx)*(P(3:ny+1,2:nx+1)-P(2:ny,2:nx+1)); uu(1:ny+1,1:nx+1)=0.5*(U(2:ny+2,1:nx+1)+U(1:ny+1,1 :nx+1)); vv(1:ny+1,1:nx+1)=0.5*(V(1:ny+1,2:nx+2)+V(1:ny+1,1 :nx+1)); w(1:ny+1,1:nx+1)=(U(2:ny+2,1:nx+1)-U(1:ny+1,1:nx+1)-... V(1:ny+1,2:nx+2)+V(1:ny+1,1:nx+1))/(2*hx); time=time+dt ; figure(2); hold off;contourf(w,60),axis equal,pause(0.01) end |
|
Tags |
2d solver, finite volume method, sor |
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
Waterwheel shaped turbine inside a pipe simulation problem | mshahed91 | CFX | 3 | January 10, 2015 12:19 |
Mass flow rate boundary condition with negative values | ashtonJ | CFX | 3 | November 26, 2014 06:21 |
Radiation interface | hinca | CFX | 15 | January 26, 2014 18:11 |
External,incompressible flow boundary condition? | John | FLUENT | 2 | August 19, 2011 01:42 |
how to use Up Stream boundary condition in open channel Flow | ms.jafarinik | FLUENT | 0 | April 18, 2010 15:38 |