|
[Sponsors] |
September 30, 2006, 00:07 |
Fractional step in ALE form - possible?
|
#1 |
Guest
Posts: n/a
|
hello,
i'm using the fractional step on a structured grid to solve flow past a cylinder. discretization is based on FVM, CN2 for viscous, AB2 for convective term. the non-dimensionalized eqns in integral form are: f[ (u(*)-u(n))/dt ]dV + f[ 1.5*u(n)*U(n)-0.5*u(n-1))*U(n-1)) ]dS = 0.5*f[ L(u(n)+u(*)).n ]dS /Re f[ dp/dn ]dS = f[ U(*).n ]dS /dt u(n+1)=u(*)- dt*(G(p)) (cc) U(n+1)=U(*)- dt*(dp/dn) (fc) f[ ] is the integration summation U is the face normal velocity, u is the cell center L is the discrete laplace operator, G is the discrete gradient. cc mean G(p) is evaluated at the cell center fc mean dp/dn is evaluated at the face center to prevent pressure oscillation. i intent to modified it to the ALE (Arbitrary Lagrangian-Eulerian) form to simulate oscillating cylinder. searching the net shows that a lot of ppl use FEM or FVM with artificial compressibility. there are some who use SIMPLE/FVM with ALE. however i can't seem to find ppl using ALE in fractional step. i wonder why? is it just preference or...? from my understanding, the main modification in the ALE form is the convective velocity, which in this case is the changing of U (face normal velocity) to U - Ub, where Ub is the face normal mesh velocity. hence, the overall change is only in the momentum and poisson eqn, where all the U will become U - Ub. also, the change in BC will be wall velocity from 0 to cylinder velocity, that's all. with these modification, i'll be able to simulate oscillating cylinder. |
|
September 30, 2006, 19:47 |
Re: Fractional step in ALE form - possible?
|
#2 |
Guest
Posts: n/a
|
I suppose you'll have to define some grid velocity associated with the intermediate position (*). Also, in the case of a deforming grid, don't forget that dV belongs inside the time derivative term (you may not need this if your cylinder grid is rigid).
|
|
October 3, 2006, 11:20 |
Re: Fractional step in ALE form - possible?
|
#3 |
Guest
Posts: n/a
|
hmm... i just tried moving the whole grid to simulate the oscillating cylinder but the answer's not correct.
BC for (*) is supposed to be at t=n+1, so the grid velocity is the one at t=n+1. other than that, i don't see any other changes required. Btw, i found that the lift/drag coefficient computed using tecplot and my own extrapolation subroutine are different, both in value and frequency, although both are wrong anyway. strangely, for sll other cases (stationary,rotating,unsteady), the cl/cd are quite similar. i believe there's no need to modify my cl/cd formula for the . that's what i was told in another post. |
|
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
How to write k and epsilon before the abnormal end | xiuying | OpenFOAM Running, Solving & CFD | 8 | August 27, 2013 16:33 |
Upgraded from Karmic Koala 9.10 to Lucid Lynx10.04.3 | bookie56 | OpenFOAM Installation | 8 | August 13, 2011 05:03 |
OpenFOAM-1.6 install cookbook | MadsR | OpenFOAM Installation | 372 | November 20, 2010 12:57 |
IcoFoam parallel woes | msrinath80 | OpenFOAM Running, Solving & CFD | 9 | July 22, 2007 03:58 |
Could anybody help me see this error and give help | liugx212 | OpenFOAM Running, Solving & CFD | 3 | January 4, 2006 19:07 |