CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > General Forums > Main CFD Forum

boundary layer

Register Blogs Community New Posts Updated Threads Search

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   August 8, 2006, 13:47
Default boundary layer
  #1
jj
Guest
 
Posts: n/a
dear cfd researchers, in boundary layer equation (flat plate) the pressure gradient is zero , then how the flow is sustained?

  Reply With Quote

Old   August 8, 2006, 15:51
Default Re: boundary layer
  #2
haifa
Guest
 
Posts: n/a
only the pressure gradient perpendicular to the wall!!!
  Reply With Quote

Old   August 9, 2006, 04:33
Default Re: boundary layer
  #3
Tom
Guest
 
Posts: n/a
It's sustained by the relative motion of the plate (stationary) to the freestream (moving). The motion in the freestream is sustained simply because it is inviscid, uniform and unidirectional (Newtons first law).

NOTE: there are visous corrections to the pressure at higher order in the infinite Reynolds number expansion.
  Reply With Quote

Old   August 10, 2006, 03:34
Default Re: boundary layer
  #4
Ram Dayal
Guest
 
Posts: n/a
Hi, Pressure gradient is assumed to be zero in transverse direction only (perpendicular to plate), and it is not zero in streamwise direction. Bye Ram Dayal
  Reply With Quote

Old   August 10, 2006, 04:57
Default Re: boundary layer
  #5
Tom
Guest
 
Posts: n/a
"Pressure gradient is assumed to be zero in transverse direction only (perpendicular to plate), and it is not zero in streamwise direction."

No! In the case of the flat plate boundary layer (Blasius) the pressure gradient IS zero in the streamwise direction. The inviscid outer flow has v=0(=w) and u constant => (Bernoulli) that p is constant. Within the boundary-layer it then follows that dp/dx=0 to lead order in the inverse Reynolds number expansion.
  Reply With Quote

Old   August 10, 2006, 21:50
Default Re: boundary layer
  #6
Ram Dayal
Guest
 
Posts: n/a
Hi Tom, Would you mind explaining it more elaborately? Thanks in advance. Bye Ram Dayal
  Reply With Quote

Old   August 11, 2006, 04:56
Default Re: boundary layer
  #7
Tom
Guest
 
Posts: n/a
The inviscid flow past a flat plate at zero incidence is simply u=U(const) v=0 => p=P(const) (i.e. there is zero pressure gradient in the inviscid flow). Now consider the viscous equations at high Reynolds number R. Since the Reynolds number is large we can seek a solution as a power series in the small parameter 1/R. Now this type of series can never satisfy the noslip condition on the surface since the lead order term fails to satisfy it and adding in smaller terms cannot rectify it. The reason for this is is simply that the noslip conditions arise from the viscous terms which have been neglected to lead order and must be reinstated. To do this rescale the normal coordinate Y=y/a and observe that the coefficient of (1/R)d^2u/dy^2 becomes unity when a = R^{-1/2}. Noting that continuity requires v = O(R^{-1/2}) we are led to Prandtl's boundary layer equations after again seeking a power series solution in 1/R of the new scaled equations:

uu_x + vu_Y = -P_x + u_YY, p_Y =0, u_x + v_Y =0.

The second equation shows that p is a function of x alone (i.e. the normal pressure gradient is zero).

The solution of these equations must satisfy appropriate boundary conditions (and one initial condition) the noslip condition u=v=0 on y=0 are two obvious ones. For the third boundary condition we require that the inviscid outer solution and viscous boundary layer solution agree in some region of common overlap. If we write the outer solution in terms of Y instead of y and expand as R->infinity we see that u->U, p->P as Y-> infinity from within the boundary layer. However since p_Y=0 we must have p=P throughout the boundary layer and hence p_x=0. This closes the problem and allows u and v to be determined within the boundary layer once an initial condition at some x station has been supplied => Blasius solution.

If you proceed to higher order in the 1/R expansion you will obtain a pressure gradient correction due to the displacement of fluid form the wall due to boundary layer growth (v is nonzero in the boundary layer).

Note that the above argument is quite general and can be applied to problems other than the flat plate where p_x is nonzero.

There's a section in "Elementary fluid dynamics" by D.J. Acheson that discusses this type of analysis.

  Reply With Quote

Old   August 11, 2006, 05:00
Default Re: boundary layer
  #8
Ram Dayal
Guest
 
Posts: n/a
Hi, Tom Thanks for Details. Bye Ram Dayal
  Reply With Quote

Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
[Gmsh] Default Faces on Boundary Layer axel OpenFOAM Meshing & Mesh Conversion 8 February 17, 2011 08:47
Boundary Layer Question scottneh STAR-CCM+ 3 September 30, 2010 15:21
Adapt mesh without modifying boundary layer cells? Freeman FLUENT 0 February 22, 2009 15:11
3D Boundary Layer Mario FLUENT 0 February 17, 2009 04:40
[Commercial meshers] Trimmed cell and embedded refinement mesh conversion issues michele OpenFOAM Meshing & Mesh Conversion 2 July 15, 2005 05:15


All times are GMT -4. The time now is 14:22.