CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > General Forums > Main CFD Forum

Inverse Panel Methods

Register Blogs Community New Posts Updated Threads Search

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   July 21, 1999, 17:28
Default Inverse Panel Methods
  #1
Nibo
Guest
 
Posts: n/a
Inverse Panel Method in 2D:

Specify a Cp distribution, and find the airfoil shape that produces the Cp distribution by solving inversely and iteratively the linear system, resulting from a panel method, w.r.t. the coordinates of the control points(not w.r.t. the singularity strengths).

QUESTION: How can I determine the strengths of the singularities for a given Cp distribution? (for example, vortex strength for each panel for constant vortex panel method.)

In the literature, no one explains how to do this, but they seem to have done this.

Thank you

Nibo
  Reply With Quote

Old   July 22, 1999, 19:07
Default Re: Inverse Panel Methods
  #2
clifford bradford
Guest
 
Posts: n/a
there have been several papers written on this subject. some techniques are general and can be applied to any aero solver (NS, euler etc). i wrote a paper for a class on this so i can give you refs. dulikravich g.s. "shape inverse design and optimization for three-dimensional aerodynamics" aiaa paper 95-0695 same author "aerodynamic shape design and and optimization: status and trends" read also the vki lecture series books titles "inverse design and optimization methods" also there are the proceedings of the "International conference on inverse design and optimization in engineering sciences, ICIDES" (I, II, III) there's also a book on inverse design by Elizarov,Il'insky, and Potashev titled "Mathematical methods of airfoil design: inverse boundary problems of aerohydrodynamics" published by Akademie Verlag if you'd like email me directly and i can send you a copy of the paper i wrote. it's on three dimensional Navier stokes inverse design techniques for turbomachinery
  Reply With Quote

Old   July 22, 1999, 21:01
Default Re: Inverse Panel Methods
  #3
Adrin Gharakhani
Guest
 
Posts: n/a
On the surface of the airfoil you have:

dg/dt = -(1/rho)(dP/ds)

where g is the surface gamma or the vortex sheet strength, t is time, dP/ds is the pressure gradient in the s direction along the contour of the airfoil. (rho is density)

Since C_p is non-dimensional Del_P, you can easily see from the above how the prescription of C_P is equivalent to prescribing the surface vorticity. Check, e.g., the book by R.I. Lewis, "Vortex Element Methods for Fluid Dynamic Analyis of Engineering Systems"

Another way of looking at it is:

C_P = 1 - (V/U_inf)^2

where U_inf is the freestream velocity and V is the local velocity. Now a boundary element (panel) formulation can be written for the potential velocity V on the surface to link C_P with the surface sources and doublets. For more details you can check, e.g., D. Mateescu, "A hybrid panel method for aerofoil aerodynamics," Boundary Elements XII, Vol. 2 Applications in Fluid Mechanics and Field Problems, Ed. Tanaka, et al, 1990

Adrin Gharakhani
  Reply With Quote

Old   July 23, 1999, 11:46
Default Re: Inverse Panel Methods
  #4
Ghassemi
Guest
 
Posts: n/a
THIS IS ALSO MY QUESTION, PLEASE SEND ME IF YOU FOIND THE ANSWERS AND RESULTS.

THANKS

HASSAN
  Reply With Quote

Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Panel methods for use in aeroelastic model Aero1 Main CFD Forum 3 September 25, 2009 06:04
Panel Methods Gerrit Groot Main CFD Forum 3 September 5, 2007 11:26
Difference CFD, Panel methods & Vortex lattice? mimi Main CFD Forum 0 December 7, 2006 10:51
Katz & Plotkin - Panel Methods will kellar Main CFD Forum 3 December 13, 1999 11:11
3D panel methods Javier Main CFD Forum 3 October 21, 1999 00:25


All times are GMT -4. The time now is 03:42.