|
[Sponsors] |
November 27, 2007, 10:24 |
convergence in unstedy problems
|
#1 |
Guest
Posts: n/a
|
Hello
I'm trying to solve an unsteady problem with moving shocks in fluent. I'm using density based solver, second order upwind discretization and Roe flux difference splittiong. I would like to check the convergence of the solution in the following way. I get a several grids (with cell sizes h of 1e-5 m, 5e-6 m 2.5e-6 m and so on). I get the strict location in the space, say x*=3e-3 m and specific time moment, say t*=2.8e-6 sec, after the shock wave passed this point. Another point was x**=-1.2e-3 m, where no shocks and only rarefactions are present. For all the grids I made the runs and plotted the pressure as function of computational cell size at this time moment at this point. I guess, that the dependence of the pressure on cell size should be as P(t*,x*) = A + B*h^2 (h - cell size, where the last term is relatively small), i.e. quadratic fuction parabola as I use the second order method. But I don't. I actually has the linear dependence P(t*,x*) = a + b*h with a very good accuracy, beginning from cell size of 5e-6 m and less. So it means, that I probably have reached the convergence, but with the first order instead of second ones. For the case with the rarefection wave I got the same result. Could anybody advise me in the follwoing quastions 1) Is this procedure strict for unsteady solvers? 2) does I actually reached the convergence? 2) Does it work in Fluent, when the shock waves are simulated? 3) Does this approach to convergence test applicable to commercial solvers? ;-) Thanks in advance |
|
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
Gas-liquid vertical separator, problems with convergence | juliom | Main CFD Forum | 0 | October 5, 2011 21:20 |
Weak rotational flow - Convergence Problems | Daggemann | FLUENT | 1 | May 8, 2009 10:45 |
NACA0012 Convergence Problems | StudentAndrew | CFX | 6 | November 21, 2005 07:49 |
Convergence problems | Simone | Siemens | 5 | June 29, 2005 11:48 |
Convergence problems | Chetan | FLUENT | 3 | April 15, 2004 20:13 |