CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Software User Forums > ANSYS > CFX

CFX13 Post Periodic interface

Register Blogs Community New Posts Updated Threads Search

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   December 7, 2011, 19:13
Question CFX13 Post Periodic interface
  #1
New Member
 
Join Date: Dec 2011
Posts: 4
Rep Power: 15
EtaEta is on a distinguished road
I am simulating a axial compressor rotor. I used my mesh in CFX11 and CFX 13. I waited until mass is converged for both cases.

When I used CFX 11, upper periodic side and lower periodic side have same Velocity v. But, for the case with CFX 13, upper periodic side and lower periodic side have slightly different Velocity v. Especially near blade tip.

What am I doing wrong?
EtaEta is offline   Reply With Quote

Old   December 8, 2011, 02:24
Default
  #2
Super Moderator
 
Glenn Horrocks
Join Date: Mar 2009
Location: Sydney, Australia
Posts: 17,870
Rep Power: 144
ghorrocks is just really niceghorrocks is just really niceghorrocks is just really niceghorrocks is just really nice
Can you post an image? And CCL would help.
ghorrocks is offline   Reply With Quote

Old   December 8, 2011, 15:18
Default Here are CCL & image
  #3
New Member
 
Join Date: Dec 2011
Posts: 4
Rep Power: 15
EtaEta is on a distinguished road
I attached an axial cut of passage. It shows an unexplainable shift.

Thank you

Here is the CCL:
PHP Code:
 +--------------------------------------------------------------------+
 |                                                                    |
 |                    
CFX Command Language for Run                    |
 |                                                                    |
 +--------------------------------------------------------------------+
 
LIBRARY:
   
MATERIALAir Ideal Gas
     Material Description 
Air Ideal Gas (constant Cp)
     
Material Group Air DataCalorically Perfect Ideal Gases
     Option 
Pure Substance
     Thermodynamic State 
Gas
     PROPERTIES
:
       
Option General Material
       EQUATION OF STATE
:
         
Molar Mass 28.96 [kg kmol^-1]
         
Option Ideal Gas
       END
       SPECIFIC HEAT CAPACITY
:
         
Option Value
         Specific Heat Capacity 
1.0044E+03 [J kg^-1 K^-1]
         
Specific Heat Type Constant Pressure
       END
       REFERENCE STATE
:
         
Option Specified Point
         Reference Pressure 
[atm]
         
Reference Specific Enthalpy 0. [J/kg]
         
Reference Specific Entropy 0. [J/kg/K]
         
Reference Temperature 25 [C]
       
END
       DYNAMIC VISCOSITY
:
         
Dynamic Viscosity 1.831E-05 [kg m^-1 s^-1]
         
Option Value
       END
       THERMAL CONDUCTIVITY
:
         
Option Value
         Thermal Conductivity 
2.61E-2 [W m^-1 K^-1]
       
END
       ABSORPTION COEFFICIENT
:
         
Absorption Coefficient 0.01 [m^-1]
         
Option Value
       END
       SCATTERING COEFFICIENT
:
         
Option Value
         Scattering Coefficient 
0.0 [m^-1]
       
END
       REFRACTIVE INDEX
:
         
Option Value
         Refractive Index 
1.0 [m m^-1]
       
END
     END
   END
 END
 FLOW
Flow Analysis 1
   SOLUTION UNITS
:
     
Angle Units = [rad]
     
Length Units = [m]
     
Mass Units = [kg]
     
Solid Angle Units = [sr]
     
Temperature Units = [K]
     
Time Units = [s]
   
END
   ANALYSIS TYPE
:
     
Option Steady State
     EXTERNAL SOLVER COUPLING
:
       
Option None
     END
   END
   DOMAIN
R1
     Coord Frame 
Coord 0
     Domain Type 
Fluid
     Location 
Passage
     BOUNDARY
R1 Blade
       Boundary Type 
WALL
       Frame Type 
Rotating
       Location 
BLADE
       BOUNDARY CONDITIONS
:
         
HEAT TRANSFER:
           
Option Adiabatic
         END
         MASS 
AND MOMENTUM:
           
Option No Slip Wall
         END
         WALL ROUGHNESS
:
           
Option Smooth Wall
         END
       END
     END
     BOUNDARY
R1 Hub
       Boundary Type 
WALL
       Frame Type 
Rotating
       Location 
HUB
       BOUNDARY CONDITIONS
:
         
HEAT TRANSFER:
           
Option Adiabatic
         END
         MASS 
AND MOMENTUM:
           
Option No Slip Wall
         END
         WALL ROUGHNESS
:
           
Option Smooth Wall
         END
       END
     END
     BOUNDARY
R1 Inlet
       Boundary Type 
INLET
       Frame Type 
Stationary
       Location 
INFLOW
       BOUNDARY CONDITIONS
:
         
FLOW DIRECTION:
           
Option Cylindrical Components
           Unit Vector Axial Component 
1
           Unit Vector Theta Component 
0
           Unit Vector r Component 
0
         END
         FLOW REGIME
:
           
Option Subsonic
         END
         HEAT TRANSFER
:
           
Option Stationary Frame Total Temperature
           Stationary Frame Total Temperature 
483.35 [K]
         
END
         MASS 
AND MOMENTUM:
           
Option Stationary Frame Total Pressure
           Relative Pressure 
195.218 [kPa]
         
END
         TURBULENCE
:
           
Option Medium Intensity and Eddy Viscosity Ratio
         END
       END
     END
     BOUNDARY
R1 Outlet
       Boundary Type 
OUTLET
       Frame Type 
Stationary
       Location 
OUTFLOW
       BOUNDARY CONDITIONS
:
         
FLOW REGIME:
           
Option Subsonic
         END
         MASS 
AND MOMENTUM:
           
Mass Flow Rate 0.10005 [kg s^-1]
           
Option Mass Flow Rate
         END
       END
     END
     BOUNDARY
R1 Shroud
       Boundary Type 
WALL
       Frame Type 
Rotating
       Location 
SHROUD
       BOUNDARY CONDITIONS
:
         
HEAT TRANSFER:
           
Option Adiabatic
         END
         MASS 
AND MOMENTUM:
           
Option No Slip Wall
           WALL VELOCITY
:
             
Option Counter Rotating Wall
           END
         END
         WALL ROUGHNESS
:
           
Option Smooth Wall
         END
       END
     END
     BOUNDARY
R1 to R1 Internal Side 1
       Boundary Type 
= INTERFACE
       
Location SHROUD TIP GGI SIDE 1
       BOUNDARY CONDITIONS
:
         
HEAT TRANSFER:
           
Option Conservative Interface Flux
         END
         MASS 
AND MOMENTUM:
           
Option Conservative Interface Flux
         END
         TURBULENCE
:
           
Option Conservative Interface Flux
         END
       END
     END
     BOUNDARY
R1 to R1 Internal Side 2
       Boundary Type 
= INTERFACE
       
Location SHROUD TIP GGI SIDE 2
       BOUNDARY CONDITIONS
:
         
HEAT TRANSFER:
           
Option Conservative Interface Flux
         END
         MASS 
AND MOMENTUM:
           
Option Conservative Interface Flux
         END
         TURBULENCE
:
           
Option Conservative Interface Flux
         END
       END
     END
     BOUNDARY
R1 to R1 Periodic 1 Side 1
       Boundary Type 
= INTERFACE
       
Location PER1
       BOUNDARY CONDITIONS
:
         
HEAT TRANSFER:
           
Option Conservative Interface Flux
         END
         MASS 
AND MOMENTUM:
           
Option Conservative Interface Flux
         END
         TURBULENCE
:
           
Option Conservative Interface Flux
         END
       END
     END
     BOUNDARY
R1 to R1 Periodic 1 Side 2
       Boundary Type 
= INTERFACE
       
Location PER2
       BOUNDARY CONDITIONS
:
         
HEAT TRANSFER:
           
Option Conservative Interface Flux
         END
         MASS 
AND MOMENTUM:
           
Option Conservative Interface Flux
         END
         TURBULENCE
:
           
Option Conservative Interface Flux
         END
       END
     END
     DOMAIN MODELS
:
       
BUOYANCY MODEL:
         
Option Non Buoyant
       END
       DOMAIN MOTION
:
         
Alternate Rotation Model true
         Angular Velocity 
26286 [rev min^-1]
         
Option Rotating
         AXIS DEFINITION
:
           
Option Coordinate Axis
           Rotation Axis 
Coord 0.1
         END
       END
       MESH DEFORMATION
:
         
Option None
       END
       REFERENCE PRESSURE
:
         
Reference Pressure [atm]
       
END
     END
     FLUID DEFINITION
Air Ideal Gas
       Material 
Air Ideal Gas
       Option 
Material Library
       MORPHOLOGY
:
         
Option Continuous Fluid
       END
     END
     FLUID MODELS
:
       
COMBUSTION MODEL:
         
Option None
       END
       HEAT TRANSFER MODEL
:
         Include 
Viscous Work Term On
         Option 
Total Energy
       END
       THERMAL RADIATION MODEL
:
         
Option None
       END
       TURBULENCE MODEL
:
         
Option SST
       END
       TURBULENT WALL FUNCTIONS
:
         
High Speed Model On
         Option 
Automatic
       END
     END
   END
   DOMAIN 
INTERFACE: R1 to R1 Internal
     Boundary List1 
R1 to R1 Internal Side 1
     Boundary List2 
R1 to R1 Internal Side 2
     
Interface Type Fluid Fluid
     
INTERFACE MODELS:
       
Option General Connection
       FRAME CHANGE
:
         
Option None
       END
       MASS 
AND MOMENTUM:
         
Option Conservative Interface Flux
         MOMENTUM 
INTERFACE MODEL:
           
Option None
         END
       END
       PITCH CHANGE
:
         
Option None
       END
     END
     MESH CONNECTION
:
       
Option GGI
     END
   END
   DOMAIN 
INTERFACE: R1 to R1 Periodic 1
     Boundary List1 
R1 to R1 Periodic 1 Side 1
     Boundary List2 
R1 to R1 Periodic 1 Side 2
     
Interface Type Fluid Fluid
     
INTERFACE MODELS:
       
Option Rotational Periodicity
       AXIS DEFINITION
:
         
Option Coordinate Axis
         Rotation Axis 
Coord 0.1
       END
     END
     MESH CONNECTION
:
       
Option GGI
     END
   END
   OUTPUT CONTROL
:
     
MONITOR OBJECTS:
       
MONITOR BALANCES:
         
Option Full
       END
       MONITOR FORCES
:
         
Option Full
       END
       MONITOR PARTICLES
:
         
Option None
       END
       MONITOR POINT
outletpressure
         Expression Value 
ave(Pressure)@R1 Outlet
         Option 
Expression
       END
       MONITOR RESIDUALS
:
         
Option Full
       END
       MONITOR TOTALS
:
         
Option Full
       END
     END
     RESULTS
:
       
Extra Output Variables List = Mach Number,Total Pressure,Total \
         
Pressure in Stn Frame,Total Temperature,Total Temperature in Stn \
         
Frame,Velocity in Stn Frame,Vorticity,Wall Shear,Temperature,Total \
         
Enthalpy in Stn Frame,Rotation Velocity
       File Compression Level 
= Default
       
Option Standard
     END
   END
   SOLVER CONTROL
:
     
Turbulence Numerics First Order
     ADVECTION SCHEME
:
       
Option High Resolution
     END
     CONVERGENCE CONTROL
:
       
Length Scale Option Conservative
       Maximum Number of Iterations 
500
       Minimum Number of Iterations 
1
       Timescale Control 
Auto Timescale
       Timescale Factor 
1
     END
     CONVERGENCE CRITERIA
:
       
Residual Target 0.000001
       Residual Type 
MAX
     END
     DYNAMIC MODEL CONTROL
:
       Global 
Dynamic Model Control On
     END
   END
 END
 COMMAND FILE
:
   
Version 13.0
   Results Version 
13.0
 END
 SIMULATION CONTROL
:
   
EXECUTION CONTROL:
     
EXECUTABLE SELECTION:
       
Double Precision Off
     END
     INTERPOLATOR STEP CONTROL
:
       
Runtime Priority Standard
       MEMORY CONTROL
:
         
Memory Allocation Factor 1.0
       END
     END
     PARALLEL HOST LIBRARY
:
       
HOST DEFINITIONeTaEta
         Remote Host Name 
EtaEta
         Installation Root 
C:\Program Files\ANSYS Inc\v%v\CFX
         Host Architecture String 
winnt-amd64
       END
     END
     PARTITIONER STEP CONTROL
:
       
Multidomain Option Independent Partitioning
       Runtime Priority 
Standard
       EXECUTABLE SELECTION
:
         Use 
Large Problem Partitioner Off
       END
       MEMORY CONTROL
:
         
Memory Allocation Factor 1.0
       END
       PARTITIONING TYPE
:
         
MeTiS Type k-way
         Option 
MeTiS
         Partition Size Rule 
Automatic
         Partition Weight Factors 
0.500000.50000
       END
     END
     RUN DEFINITION
:
       
Solver Input File = \
         
C:\Users\EtaEta\Base\base_v1_m_010005_new_002.res
       Run Mode 
Full
     END
     SOLVER STEP CONTROL
:
       
Runtime Priority Standard
       MEMORY CONTROL
:
         
Memory Allocation Factor 1.0
       END
       PARALLEL ENVIRONMENT
:
         
Number of Processes 2
         Start Method 
HP MPI Local Parallel
         Parallel Host 
List = eTaEta*2
       END
     END
   END
 END 
Attached Images
File Type: jpg example.jpg (39.6 KB, 53 views)
EtaEta is offline   Reply With Quote

Old   December 8, 2011, 17:23
Default
  #4
Super Moderator
 
Glenn Horrocks
Join Date: Mar 2009
Location: Sydney, Australia
Posts: 17,870
Rep Power: 144
ghorrocks is just really niceghorrocks is just really niceghorrocks is just really niceghorrocks is just really nice
Can you show what the problem is? It is not clear.

But if you are talking about the interfaces then that is just a post processing rendering thing. The underlying simulation should be the same. View both simulations with the same post processor and it should look the same.
ghorrocks is offline   Reply With Quote

Old   December 8, 2011, 17:46
Default
  #5
New Member
 
Join Date: Dec 2011
Posts: 4
Rep Power: 15
EtaEta is on a distinguished road
If you look to the picture, you can see there is a clear shift in the middle.
Normally, two periodic interfaces should coincide and have same values.

It is a not a interface problem. I think there is a tolerance in the periodic side, whose default value is increased when switching from CFX 11 to CFX 13.

Thanks
EtaEta is offline   Reply With Quote

Old   December 8, 2011, 17:51
Default
  #6
Super Moderator
 
Glenn Horrocks
Join Date: Mar 2009
Location: Sydney, Australia
Posts: 17,870
Rep Power: 144
ghorrocks is just really niceghorrocks is just really niceghorrocks is just really niceghorrocks is just really nice
As I said, I suspect it is a post processing issue. Have you compared the two runs on the same post processor? It might be rendered differently between V11 and V13.
ghorrocks is offline   Reply With Quote

Old   December 8, 2011, 17:57
Default
  #7
New Member
 
Join Date: Dec 2011
Posts: 4
Rep Power: 15
EtaEta is on a distinguished road
Yes, I did. CFX 11 run has same velocities at periodic boundary in CFX 13 Post. But still, the run from CFX 13, in CFX 13 Post, shows slightly different velocities.

(CFX 11 Post does not accept the runs of CFX 13)
EtaEta is offline   Reply With Quote

Old   December 8, 2011, 18:15
Default
  #8
Super Moderator
 
Glenn Horrocks
Join Date: Mar 2009
Location: Sydney, Australia
Posts: 17,870
Rep Power: 144
ghorrocks is just really niceghorrocks is just really niceghorrocks is just really niceghorrocks is just really nice
So that proves it, doesn't it? It is a post-processor rendering thing. The simulations are the same.
ghorrocks is offline   Reply With Quote

Reply

Tags
cfx post 11, cfx post 13, periodic bc, rotor


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
how to set periodic boundary conditions Ganesh FLUENT 15 November 18, 2020 07:09
problem about periodic boundary condition in Fluent winnawinna FLUENT 0 December 29, 2010 00:32
[ICEM] Specifying Periodic Vertices Causes Mesh Overlap Josh ANSYS Meshing & Geometry 10 July 8, 2010 03:39
Un-even Periodic Interface Problem Jonathan FLUENT 2 April 12, 2005 17:47
Replace periodic by inlet-outlet pair lego CFX 3 November 5, 2002 21:09


All times are GMT -4. The time now is 10:09.