|
[Sponsors] |
anyone know the problem of my cavitation flow? |
|
LinkBack | Thread Tools | Search this Thread | Display Modes |
August 2, 2011, 12:35 |
anyone know the problem of my cavitation flow?
|
#1 |
New Member
GARY JANE
Join Date: Nov 2010
Posts: 11
Rep Power: 16 |
The problem is like that:when i set the saturation pressure as constant in the cavitation,it's fine,but if i set the pressure as the function of temperature ,it always made an error below:
Slave: 2 Slave: 2 Details of error:- Slave: 2 ---------------- Slave: 2 Error detected by routine MAKDAT Slave: 2 CDANAM = PSATREL CDTYPE = REAL ISIZE = 903 Slave: 2 CRESLT = OLD Slave: 2 Slave: 2 Current Directory : /FLOW/PHYSICS/MATERIALS/MT2/ENTHSTAT . . . +--------------------------------------------------------------------+ | ERROR #001100279 has occurred in subroutine ErrAction. | | Message: | | Stopped in routine MEMERR | | | | | | | | | | | +--------------------------------------------------------------------+ anyone know the problem and how to solve it? Thank you very much! |
|
August 29, 2011, 18:31 |
|
#2 | |
New Member
Join Date: Aug 2011
Posts: 8
Rep Power: 15 |
Quote:
http://www.cheresources.com/content/...ater-and-steam I have also worked on the compressible cavitating flows. If you want to use my subroutine developed for IAPWS-IF97 just tell me. |
||
August 29, 2011, 19:34 |
|
#3 |
Super Moderator
Glenn Horrocks
Join Date: Mar 2009
Location: Sydney, Australia
Posts: 17,870
Rep Power: 144 |
Why not use the built-in IAPWS water properties?
|
|
August 30, 2011, 01:58 |
|
#4 |
New Member
Join Date: Aug 2011
Posts: 8
Rep Power: 15 |
||
August 30, 2011, 07:11 |
|
#5 |
Super Moderator
Glenn Horrocks
Join Date: Mar 2009
Location: Sydney, Australia
Posts: 17,870
Rep Power: 144 |
I do not understand your point. The IAPWS water properties are already available in CFX so you do not need to code anything in fortran to get them. It is available through the GUI. But I guess it is good fortran training
|
|
May 15, 2012, 01:18 |
flash boiling flows
|
#6 | |
New Member
SV
Join Date: May 2012
Posts: 2
Rep Power: 0 |
Quote:
I am modelling flash boiling flows in CFX. I wonder if I could have your subroutine developed for IAPWS-IF97? Thanks in advance |
||
May 15, 2012, 08:42 |
|
#7 |
Super Moderator
Glenn Horrocks
Join Date: Mar 2009
Location: Sydney, Australia
Posts: 17,870
Rep Power: 144 |
Um - did you read my posts? You do not need to code IAPWS-97 as it is already in CFX. If you have time to waste then feel free to code it up but I have better things to do with my time.
|
|
May 15, 2012, 16:55 |
|
#8 | |
New Member
SV
Join Date: May 2012
Posts: 2
Rep Power: 0 |
Quote:
Thanks for your comment. I thought the mentioned code in previous posts is modification of IAPWS-IF97 which can model "metastable state" present during the cavitation and flash boiling. So the built-in IAPWS is accurate enough to model "metastable state" ? |
||
May 15, 2012, 20:38 |
|
#9 |
Super Moderator
Glenn Horrocks
Join Date: Mar 2009
Location: Sydney, Australia
Posts: 17,870
Rep Power: 144 |
The IAPWS-97 model is pretty accurate in the metastable region and this is included in the CFX built in model.
|
|
December 23, 2015, 07:16 |
|
#10 | |
New Member
Join Date: Aug 2011
Posts: 8
Rep Power: 15 |
Quote:
SUBROUTINE CONSTANT IMPLICIT NONE REAL*8 CII1,CJI1,CNI1 REAL*8 CNI2,CNI6,CNI7,CNI9,CNIJ10,CNI11 REAL*8 CJI0,CNI0 REAL*8 CII4,CJI4,CNI4 REAL*8 CII5,CJI5,CNI5 REAL*8 CII8,CJI8,CNI8 COMMON/TAB1/CII1(34),CJI1(34),CNI1(34),CNI2(5),CJI0(9),CNI0(9) , & CII4(43),CJI4(43),CNI4(43),CII5(40),CJI5(40),CNI5( 40), & CNI6(10),CNI7(4),CII8(19),CJI8(19),CNI8(19),CNI9(4 ), & CNIJ10(6,5),CNI11(5) INTEGER I REAL*8 INDE(43) OPEN(111,FILE='TABLES.DAT') DO I=1,15 READ(111,*) ENDDO DO I=1,34 READ(111,*)INDE(I),CII1(I),CJI1(I),CNI1(I) ENDDO C READ TABLE 2 READ(111,*) READ(111,*) DO I=1,5 READ(111,*)INDE(I),CNI2(I) ENDDO C READ TABLE 3 READ(111,*) READ(111,*) DO I=1,9 READ(111,*)INDE(I),CJI0(I),CNI0(I) ENDDO C READ TABLE 4 READ(111,*) READ(111,*) DO I=1,43 READ(111,*)INDE(I),CII4(I),CJI4(I),CNI4(I) ENDDO C READ TABLE 5 READ(111,*) READ(111,*) DO I=1,40 READ(111,*)INDE(I),CII5(I),CJI5(I),CNI5(I) ENDDO C READ TABLE 6 READ(111,*) READ(111,*) DO I=1,10 READ(111,*)INDE(I),CNI6(I) ENDDO C READ TABLE 7 READ(111,*) READ(111,*) DO I=1,4 READ(111,*)INDE(I),CNI7(I) ENDDO C READ TABLE 8 READ(111,*) READ(111,*) DO I=1,19 READ(111,*)INDE(I),CII8(I),CJI8(I),CNI8(I) ENDDO C READ TABLE 9 READ(111,*) READ(111,*) DO I=1,4 READ(111,*)INDE(I),CNI9(I) ENDDO C READ TABLE 11 READ(111,*) READ(111,*) DO I=1,5 READ(111,*)INDE(I),CNI11(I) ENDDO C READ TABLE 10 READ(111,*) READ(111,*) DO I=1,6 READ(111,*)CNIJ10(I,1),CNIJ10(I,2),CNIJ10(I,3),CNI J10(I,4),CNIJ10(I,5) ENDDO CLOSE(111) RETURN END SUBROUTINE PROP(YV,TNK,PPASL,PV,DROLP,DROLT,DHLP,DHLT,HLP, & ROLP,DROVP,DROVT,DHVP,DHVT,HVP,ROVP,PSATP,TSATP,IF L, & MULP,MUVP,CKLP,CKVP) IMPLICIT NONE REAL*8 CII1,CJI1,CNI1 REAL*8 CNI2,CNI6,CNI7,CNI9,CNIJ10,CNI11 REAL*8 CJI0,CNI0 REAL*8 CII4,CJI4,CNI4 REAL*8 CII5,CJI5,CNI5 REAL*8 CII8,CJI8,CNI8 COMMON/TAB1/CII1(34),CJI1(34),CNI1(34),CNI2(5),CJI0(9),CNI0(9) , & CII4(43),CJI4(43),CNI4(43),CII5(40),CJI5(40),CNI5( 40), & CNI6(10),CNI7(4),CII8(19),CJI8(19),CNI8(19),CNI9(4 ), & CNIJ10(6,5),CNI11(5) REAL*8 TLIM1,TLIM2,TLIM3,TLIM4,TLIM5,R PARAMETER (TLIM1=273.15D0,TLIM2=623.15D0,TLIM3=647.096D0) PARAMETER (TLIM4=863.15D0,TLIM5=1073.15,R=461.526D0) INTEGER II,IFL REAL*8 DROLP,DROLT,DHLP,DHLT,HLP,ROLP,MULP,MUVP,CKLP,CKVP REAL*8 DROVP,DROVT,DHVP,DHVT,HVP,ROVP,PSATP,PB23 REAL*8 PPASL,PPASV,TNK,TNKL,TNKV,TAUL,TAUV,TS,AAS,BBS,CCS ,PAIL,PAIV, & GPI,GPIPI,GPITAU,GTAU,GTAUTAU,GTAUPI,GPIR, & GPIPI0,GPIPIR,GPITAU1R,GTAU1R,GTAU1PI0, & GTAU1PIR,GTTR,GTAU10,GTT0,YV,THETA REAL*8 PP,BET,EES,FFS,GGS,DDS,TSATP,PV PP=PPASL PPASV=PPASL TS=TNK;TNKL=TNK;TNKV=TNK C COMPUTE SATURATION TEMPERATURE C CHECK IF P IS OUTSITE THE VALID RANGE FOR REGION... IF (PP.LT.611.212677D0)PP=611.212677D0 IF (PP.GT.22.064D6)PP=22.064D6 BET=(PP/1.D6)**0.25D0 EES=BET**2.D0+CNI6(3)*BET+CNI6(6) FFS=CNI6(1)*BET**2.D0+CNI6(4)*BET+CNI6(7) GGS=CNI6(2)*BET**2.D0+CNI6(5)*BET+CNI6(8) DDS=2.D0*GGS/(-FFS-DSQRT(FFS**2.D0-4.D0*EES*GGS)) TSATP=0.5D0*(CNI6(10)+DDS- & DSQRT( (CNI6(10)+DDS)**2.D0 -4.D0*(CNI6(9)+CNI6(10)*DDS) ) ) C COMPUTE SATURATION PRESSURE C CHECK IF TS IS OUTSITE THE VALID RANGE FOR REGION 4 IF (TS.LT.TLIM1)TS=TLIM1 IF (TS.GT.TLIM2)TS=TLIM2 THETA=TS+CNI6(9)/(TS-CNI6(10)) AAS=THETA**2.D0+CNI6(1)*THETA+CNI6(2) BBS=CNI6(3)*THETA**2.D0+CNI6(4)*THETA+CNI6(5) CCS=CNI6(6)*THETA**2.D0+CNI6(7)*THETA+CNI6(8) PSATP=1.0D+06*(2.D0*CCS/ 1 (-BBS+DSQRT(BBS**2.D0-4.D0*AAS*CCS)))**4.D0 C COMPUTE BOILING PRESSURE PB23=1.D6*(CNI11(1)+CNI11(2)*TNK+CNI11(3)*TNK**2.D 0) C COMPUTE LIQUID AND VAPOR DENSITY C CHECK IF TNKL AND PPASL ARE OUTSITE THE VALID RANGE FOR REGION 1 IF (TNKL.LT.TLIM1)TNKL=TLIM1 IF (TNKL.GT.TLIM2)TNKL=TLIM2 IF (PPASL.LT.PSATP)PPASL=PSATP IF (PPASL.GT.1.0D8)PPASL=1.0D8 IF (YV.NE.0.D0) PPASL=PSATP C CHECK IF TNKV AND PPASV ARE OUTSITE THE VALID RANGE FOR REGION 2 IF (TNKV.LT.TLIM1)TNKV=TLIM1 IF (TNKV.GT.TLIM5)TNKV=TLIM5 IF (YV.NE.1.D0.OR.PPASV.GT.PSATP)PPASV=PSATP IF (TNKV.GT.TLIM2.AND.TNKV.LE.TLIM4.AND.PPASV.GT.PB23 )PPASV=PB23 IF (TNKV.GT.TLIM4.AND.TNKV.LE.TLIM5.AND.PPASV.GT.1.D8 )PPASV=1.D8 IF (PPASV.LT.611.212677D0) PPASV=611.212677D0 PAIL=PPASL/16.53D+06 PAIV=PPASV/1.0D+06 TAUL=1386.0D0/TNKL TAUV=540.0D0/TNKV C PARAMETERS FOR LIQUID GPI =0.D0 GPIPI =0.D0 GPITAU =0.D0 GTAU =0.D0 GTAUTAU=0.D0 GTAUPI =0.D0 C PARAMETERS FOR VAPOR GPIR =0.D0 GPIPI0 =-1.D0/PAIV**2.D0 GPIPIR =0.D0 GPITAU1R=0.D0 GTAU1R =0.D0 GTAU1PI0=0.D0 GTAU1PIR=0.D0 GTTR =0.D0 GTAU10 =0.D0 GTT0 =0.D0 DO II=1,43 IF (II.LE.34)THEN C COMPUTE LIQUID DENSITY GPI =GPI-CNI1(II)*CII1(II)*(7.1D0-PAIL)**(CII1(II)-1.D0) & *(TAUL-1.222D0)**CJI1(II) C COMPUTE DERIVATIVES OF LIQUID DENSITY WITH RESPECT TO P AND T GPIPI =GPIPI+CNI1(II)*CII1(II)*(CII1(II)-1.D0)*(7.1D0-PAIL)** & (CII1(II)-2.D0)*(TAUL-1.222D0)**CJI1(II) GPITAU=GPITAU-CNI1(II)*CII1(II)*(7.1D0-PAIL)**(CII1(II)-1.D0)* & CJI1(II)*(TAUL-1.222D0)**(CJI1(II)-1.D0) C COMPUTE LIQUID ENTHALPY GTAU =GTAU+CNI1(II)*(7.1D0-PAIL)**CII1(II)* & CJI1(II)*(TAUL-1.222D0)**(CJI1(II)-1.D0) C COMPUTE THE DERIVATIVES OF LIQUID ENTHALPY WITH RESPECT TO P AND T GTAUTAU=GTAUTAU+CNI1(II)*(7.1D0-PAIL)**CII1(II)*CJI1(II)* & (CJI1(II)-1.D0)*(TAUL-1.222D0)**(CJI1(II)-2.D0) GTAUPI =GTAUPI-CNI1(II)*CII1(II)*(7.1D0-PAIL)**(CII1(II)-1.D0)* & CJI1(II)*(TAUL-1.222D0)**(CJI1(II)-1.D0) ENDIF !II<=34 IF (II.LE.9)THEN GTAU10 =GTAU10+CNI0(II)*CJI0(II)*TAUV**(CJI0(II)-1.D0) GTT0 =GTT0+CNI0(II)*CJI0(II)*(CJI0(II)-1.D0)* & TAUV**(CJI0(II)-2.D0) ENDIF !II<=9 GPIR =GPIR+CNI4(II)*CII4(II)* & PAIV**(CII4(II)-1.D0)*(TAUV-0.5D0)**CJI4(II) COMPUTE DERIVATIVES OF VAPOR DENSITY WITH RESPECTO P AND T GPIPIR =GPIPIR +CNI4(II)*CII4(II)*(CII4(II)-1.D0)* & PAIV**(CII4(II)-2.D0)*(TAUV-0.5D0)**CJI4(II) GPITAU1R=GPITAU1R +CNI4(II)*CII4(II)*PAIV**(CII4(II)-1.D0)* & CJI4(II)*(TAUV-0.5D0)**(CJI4(II)-1.D0) GTAU1R=GTAU1R+CNI4(II)*PAIV**CII4(II)* & CJI4(II)*(TAUV-0.5D0)**(CJI4(II)-1.D0) C COMPUTE DERIVATIVES OD VAPOR ENTHALPY ABOUT P AND T : CPSATVAPTW(T) GTAU1PIR=GTAU1PIR+CNI4(II)*CII4(II)*PAIV**(CII4(II )-1.D0)* & CJI4(II)*(TAUV-0.5D0)**(CJI4(II)-1.D0) !! GTTR=GTTR+CNI4(II)*PAIV**CII4(II)*CJI4(II)* & (CJI4(II)-1.D0)*(TAUV-0.5D0)**(CJI4(II)-2.D0) ENDDO DROLP=-GPIPI/R/TNKL/GPI**2.D0 DROLT=-16.53D+06*(GPI-TAUL*GPITAU)/R/TNKL**2.D0/GPI**2.D0 DHLT=-TAUL**2.D0*R*GTAUTAU DHLP=1386.0D0*R*GTAUPI/16.53D+06 ROLP=(R*TNKL*GPI/16.53D+06)**(-1.D0) HLP=R*1386.0D0*GTAU DROVP=-(GPIPI0+GPIPIR)/R/TNKV/(1.D0/PAIv+GPIR)**2.D0 DROVT=-1.0D+6/R/TNKV**2.D0*(1.D0/ 1 (1.D0/PAIV+GPIR)-TAUV*GPITAU1R/(1.D0/PAIV+GPIR)**2.D0) DHVP=R*540.D0/1.0D+06*(GTAU1PI0+GTAU1PIR) DHVT=-R*TAUV**2.D0*(GTT0+GTTR) ROVP=(R*TNKV/1.0D+06*(1.D0/PAIV+GPIR))**(-1.D0) HVP=R*540.D0*(GTAU10+GTAU1R) IF (IFL.EQ.1)CALL VISCOSITY(TNKL,TNKV,PPASL,PPASV,ROLP,ROVP, & MULP,MUVP,CKLP,CKVP) PPASL=PP; PV=PPASV RETURN END SUBROUTINE VISCOSITY(TNKL,TNKV,PPASL,PPASV,ROLP,ROVP, & MULP,MUVP,CKLP,CKVP) IMPLICIT NONE REAL*8 CII1,CJI1,CNI1 REAL*8 CNI2,CNI6,CNI7,CNI9,CNIJ10,CNI11 REAL*8 CJI0,CNI0 REAL*8 CII4,CJI4,CNI4 REAL*8 CII5,CJI5,CNI5 REAL*8 CII8,CJI8,CNI8 COMMON/TAB1/CII1(34),CJI1(34),CNI1(34),CNI2(5),CJI0(9),CNI0(9) , & CII4(43),CJI4(43),CNI4(43),CII5(40),CJI5(40),CNI5( 40), & CNI6(10),CNI7(4),CII8(19),CJI8(19),CNI8(19),CNI9(4 ), & CNIJ10(6,5),CNI11(5) REAL*8 TNKL,TNKV,TNK,TNC,PPASL,PPASV,ROLP,ROVP,MULP,MUVP, MU0L,MU1L, & MU0V,MU1V,DL,DV,TAUL,TAUV,SUML,SUMV,CKLP,CKVP,CK0L ,CK1L, & CK0V,CK1V INTEGER I REAL*8 DV1,DV2,DV3,DV4,DV11,DV21,DV31,DV41 DV1= 0.15541443D+01 DV2= 0.66106305D+02 DV3= 0.55969886D+04 DV4= -0.39259598D+01 DV11= 0.79349503D+00 DV21=-0.13340063D+04 DV31= 0.37884327D+06 DV41= 0.23591474D+01 TNK=TNKL DL=ROLP/317.763D0 DV=ROVP/317.763D0 TAUL=647.226D0/TNKL TAUV=647.226D0/TNKV C VISCOSITY SUML=0.D0 SUMV=0.D0 DO I=1,4 SUML=SUML+CNI7(I)*TAUL**(I-1) SUMV=SUMV+CNI7(I)*TAUV**(I-1) ENDDO MU0L=1.D0/(DSQRT(TAUL)*SUML) MU0V=1.D0/(DSQRT(TAUV)*SUMV) SUML=0.D0 SUMV=0.D0 DO I=1,19 SUML=SUML+CNI8(I)*(DL-1.D0)**CII8(I)*(TAUL-1.D0)**CJI8(I) SUMV=SUMV+CNI8(I)*(DV-1.D0)**CII8(I)*(TAUV-1.D0)**CJI8(I) ENDDO MU1L=DEXP(DL*SUML) MU1V=DEXP(DV*SUMV) MULP=55.071D-6*MU0L*MU1L MUVP=55.071D-6*MU0V*MU1V C THERMALCONDUCTIVITY C COMPUTE THE THERMAL CONDUCTIVITY OF LIQUID, VAPOR IF (TNK.LT.1000.D0)THEN CKVP=1.0D-04*DEXP(DV1*DLOG(TNK)+DV2/TNK+DV3/TNK**2.D0+DV4) ! W/M.K ELSE CKVP=1.0D-04*DEXP(DV11*DLOG(TNK)+DV21/TNK+DV31/TNK**2.D0+DV41) ! W/M.K ENDIF IF (TNK.GT.347.15) TNK=347.15 TNC=TNK-273.15D0 CKLP =0.56075D0+1.9947D-03*TNC-7.9003D-06*TNC**2.D0 ! W/M.K RETURN END TABLES.DAT ** DATA FOR THERMODYNAMIC CALCUATIONS OF VAPOR AND LIQUID** ** TABLE 1 FOR CALUCALTIONS OF : LIQUID DENSITY, LIQUID ENTHALPY AND THE DERIVATIVES OF LIQUID DENSITY AND ENTHALPY WITH RESPEC TO P AND T ** TABLE 2 FOR CALUCALTIONS OF BOILING PRESSURE ** TABLE 3-4 FOR CALUCALTIONS OF : VAPOR DENSITY, VAPOR ENTHALPY AND THE DERIVATIVES OF LIQUID DENSITY AND ENTHALPY WITH RESPEC TO P AND T IN SATURATION REGION (REGION 2) ** TABLE 5 FOR CALUCALTIONS OF : VAPOR DENSITY, VAPOR ENTHALPY AND THE DERIVATIVES OF LIQUID DENSITY AND ENTHALPY WITH RESPEC TO P AND T IN BOIING REGION (REGION 3) ** TABLE 6 FOR CALUCALTIONS OF SATURATION PRESSURE ** TABLE 7 FOR CALUCALTIONS OF DYNAMIC VISCOSITY OF VAPOR ** TABLE 8 FOR CALUCALTIONS OF DYNAMIC VISCOSITY OF LIQUID ** TABLE 9 FOR CALUCALTIONS OF THERMAL CONDUCTIVITY OF VAPOR ** TABLE 10 FOR CALUCALTIONS OF THERMAL CONDUCTIVITY OF LIQUID Table1:Coefficients ande xponents of the fundamental equation and itsderivatives i Ii Ji ni 1 0 -2 0.14632971213167E+00 2 0 -1 -0.84548187169114E+00 3 0 0 -0.37563603672040E+01 4 0 1 0.33855169168385E+01 5 0 2 -0.95791963387872E+00 6 0 3 0.15772038513228E+00 7 0 4 -0.16616417199501E-01 8 0 5 0.81214629983568E-03 9 1 -9 0.28319080123804E-03 10 1 -7 -0.60706301565874E-03 11 1 -1 -0.18990068218419E-01 12 1 0 -0.32529748770505E-01 13 1 1 -0.21841717175414E-01 14 1 3 -0.52838357969930E-04 15 2 -3 -0.47184321073267E-03 16 2 0 -0.30001780793026E-03 17 2 1 0.47661393906987E-04 18 2 3 -0.44141845330846E-05 19 2 17 -0.72694996297594E-15 20 3 -4 -0.31679644845054E-04 21 3 0 -0.28270797985312E-05 22 3 6 -0.85205128120103E-09 23 4 -5 -0.22425281908000E-05 24 4 -2 -0.65171222895601E-06 25 4 10 -0.14341729937924E-12 26 5 -8 -0.40516996860117E-06 27 8 -11 -0.12734301741641E-08 28 8 -6 -0.17424871230634E-09 29 21 -29 -0.68762131295531E-18 30 23 -31 0.14478307828521E-19 31 29 -38 0.26335781662795E-22 32 30 -39 -0.11947622640071E-22 33 31 -40 0.18228094581404E-23 34 32 -41 -0.93537087292458E-25 Table 2. i ni 1 0.34805185628969E+03 2 -0.11671859879975E+01 3 0.10192970039326E-02 4 0.57254459862746E+03 5 0.13918839778870E+02 Table.3.Coefficientsandexponentsoftheideal-gaspartofthefundamentalequationanditsderivatives i Ji0 ni0 1 0 -0.96927686500217E+01 2 1 0.10086655968018E+02 3 -5 -0.56087911283020E-02 4 -4 0.71452738081455E-01 5 -3 -0.40710498223928E+00 6 -2 0.14240819171444E+01 7 -1 -0.43839511319450E+01 8 2 -0.28408632460772E+00 9 3 0.21268463753307E-01 Table4.Coefficientsandexponentsoftheresidualpartof thefundamentalequationanditsderivatives i Ii Ji ni 1. 1. 0. -0.17731742473213E-02 2 1. 1. -0.17834862292358E-01 3 1 2 -0.45996013696365E-01 4 1 3 -0.57581259083432E-01 5 1 6 -0.50325278727930E-01 6 2 1 -0.33032641670203E-04 7 2 2 -0.18948987516315E-03 8 2 4 -0.39392777243355E-02 9 2 7 -0.43797295650573E-01 10 2 36 -0.26674547914087E-04 11 3 0 0.20481737692309E-07 12 3 1 0.43870667284435E-06 13 3 3 -0.32277677238570E-04 14 3 6 -0.15033924542148E-02 15 3 35 -0.40668253562649E-01 16 4 1 -0.78847309559367E-09 17 4 2 0.12790717852285E-07 18 4 3 0.48225372718507E-06 19 5 7 0.22922076337661E-05 20 6 3 -0.16714766451061E-10 21 6 16 -0.21171472321355E-02 22 6 35 -0.23895741934104E+02 23 7 0 -0.59059564324270E-17 24 7 11 -0.12621808899101E-05 25 7 25 -0.38946842435739E-01 26 8 8 0.11256211360459E-10 27 8 36 -0.82311340897998E+01 28 9 13 0.19809712802088E-07 29 10 4 0.10406965210174E-18 30 10 10 -0.10234747095929E-12 31 10 14 -0.10018179379511E-08 32 16 29 -0.80882908646985E-10 33 16 50 0.10693031879409E+00 34 18 57 -0.33662250574171E+00 35 20 20 0.89185845355421E-24 36 20 35 0.30629316876232E-12 37 20 48 -0.42002467698208E-05 38 21 21 -0.59056029685639E-25 39 22 53 0.37826947613457E-05 40 23 39 -0.12768608934681E-14 41 24 26 0.73087610595061E-28 42 24 40 0.55414715350778E-16 43 24 58 -0.94369707241210E-06 Table 5: Coefficients and exponents of the fundamental equation and its derivatives (REGION3) i Ii Ji ni 1 0 0 0.10658070028513E+01 2 0 0 -0.15732845290239E+02 3 0 1 0.20944396974307E+02 4 0 2 -0.76867707878716E+01 5 0 7 0.26185947787954E+01 6 0 10 -0.28080781148620E+01 7 0 12 0.12053369696517E+01 8 0 23 -0.84566812812502E-02 9 1 2 -0.12654315477714E+01 10 1 6 -0.11524407806681E+01 11 1 15 0.88521043984318E+00 12 1 17 -0.64207765181607E+00 13 2 0 0.38493460186671E+00 14 2 2 -0.85214708824206E+00 15 2 6 0.48972281541877E+01 16 2 7 -0.30502617256965E+01 17 2 22 0.39420536879154E-01 18 2 26 0.12558408424308E+00 19 3 0 -0.27999329698710E+00 20 3 2 0.13899799569460E+01 21 3 4 -0.20189915023570E+01 22 3 16 -0.82147637173963E-02 23 3 26 -0.47596035734923E+00 24 4 0 0.43984074473500E-01 25 4 2 -0.44476435428739E+00 26 4 4 0.90572070719733E+00 27 4 26 0.70522450087967E+00 28 5 1 0.10770512626332E+00 29 5 3 -0.32913623258954E+00 30 5 26 -0.50871062041158E+00 31 6 0 -0.22175400873096E-01 32 6 2 0.94260751665092E-01 33 6 26 0.16436278447961E+00 34 7 2 -0.13503372241348E-01 35 8 26 -0.14834345352472E-01 36 9 2 0.57922953628084E-03 37 9 26 0.32308904703711E-02 38 10 0 0.80964802996215E-04 39 10 1 -0.16557679795037E-03 40 11 26 -0.44923899061815E-04 Table 6: Coefficients of the saturation pressure and temperature equations i ni 1 0.11670521452767E+04 2 -0.72421316703206E+06 3 -0.17073846940092E+02 4 0.12020824702470E+05 5 -0.32325550322333E+07 6 0.14915108613530E+02 7 -0.48232657361591E+04 8 0.40511340542057E+06 9 -0.23855557567849E+00 10 0.65017534844798E+03 Table 7: Coefficients of the ideal gas part -(Dynamic Viscosity OF VAPOR) i ni 0 0.100000E+01 1 0.978197 2 0.579829 3 -0.202354 Table 8: Coefficients and exponents of the real fluid part-Dynamic Viscosity i Ii Ji ni 1 0 0 0.5132047 2 0 1 0.3205656 3 0 4 -0.7782567 4 0 5 0.1885447 5 1 0 0.2151778 6 1 1 0.7317883 7 1 2 0.1241044E+01 8 1 3 0.1476783E+01 9 2 0 -0.2818107 10 2 1 -0.1070786E+01 11 2 2 -0.1263184E+01 12 3 0 0.1778064 13 3 1 0.4605040 14 3 2 0.2340379 15 3 3 -0.4924179 16 4 0 -0.4176610E-01 17 4 3 0.1600435 18 5 1 -0.1578386E-01 19 6 3 -0.3629481E-02 Table 9: Coefficients of the ideal gas part-Thermal Conductivity i ni 0 0.1000000E+01 1 0.6978267E+01 2 0.2599096E+01 3 -0.9982540 Table 11: Coefficients of the equations pb23 i ni 1 0.34805185629869D3 2 -0.11671859879975D1 3 0.10192970039326D-2 4 0.57254459862746D3 5 0.13918839778870D2 Table 10: Coefficients nij of the first real fluid part-Thermal Conductivity i: horizontal; j:vertical 0.13293046E+01 0.17018363E+01 0.52246158E+01 0.87127675E+01 -0.18525999E+01 -0.40452437E+00 -0.22156845E+01 -0.10124111E+02 -0.95000611E+01 0.93404690E+00 0.24409490E+00 0.16511057E+01 0.49874687E+01 0.43786606E+01 0.E+00 0.18660751E-01 -0.76736002E+00 -0.27297694E+00 -0.91783782E+00 0.E+00 -0.12961068E+00 0.37283344E+00 -0.43083393E+00 0.E+00 0.E+00 0.44809953E-01 -0.11203160E+00 0.13333849E+00 0.E+00 0.E+00 Table2.31: i Ii Ji ni 1 0 0 -0.23872489924521D3 2 0 1 0.40421188637945D3 3 0 2 0.11349746881718D3 4 0 6 -0.58457616048039D1 5 0 22 -0.15285482413140D-3 6 0 32 -0.10866707695377D-5 7 1 0 -0.13391744872602D2 8 1 1 0.43211039183559D2 9 1 2 -0.54010067170506D2 10 1 3 0.30535892203916D2 11 1 4 -0.65964749423638D1 12 1 10 0.93965400878363D-2 13 1 32 0.11573647505340D-6 14 2 10 -0.25858641282073D-4 15 2 32 -0.40644363084799D-8 16 3 10 0.66456186191635D-7 17 3 32 0.80670734103027D-10 18 4 32 -0.93477771213947D-12 19 5 32 0.58265442020601D-14 20 6 32 -0.15020185953503D-16 Hope this helps..! |
||
Tags |
cavitation |
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
flow past abdominal aorta. Complex BC problem. | ziemowitzima | OpenFOAM Running, Solving & CFD | 1 | July 26, 2022 06:12 |
Axisymmetric Vs 2D Flow problem | nikhil | FLUENT | 0 | March 30, 2010 00:52 |
A problem: reversed flow in ... on outflow. | vandadt | FLUENT | 10 | November 10, 2009 17:40 |
3D Fluid Flow Convergence problem | Emily | FLUENT | 2 | March 21, 2007 23:18 |
transient compressible flow problem (urgent plz) | jehanzeb | FLUENT | 5 | August 3, 2004 09:04 |