Direct Numerical Simulation on a wing profile
Direct Numerical Simulation on a wing profile
1 billion points DNS (Direct Numerical Simulation) on a NACA4412 profile at 5 degrees angle of attack. Reynolds number is 350000 per airfoil chord and Mach number is 0.117. Both upper and lower turbulent boundary layers are tripped respectively at 15% and 50% by roughness elements evenly spaced in the boundary layer created by a zonal immersed boundary condition (Journal of Computational Physics, Volume 363, 15 June 2018, Pages 231-255, https://www.sciencedirect.com/science...). The spanwise extent is 0.3*chord. The computation has been performed on a structured multiblock mesh with the FastS compressible flow solver developed by ONERA on 1064 MPI cores. The video shows the early stages of the calculation (equivalent to 40000 time steps) highlighting the spatial development of fine-scale turbulence in both attached boundary layer and free wake. Post-processing and flow images have been made with Cassiopée (http://elsa.onera.fr/Cassiopee).
1 billion points DNS (Direct Numerical Simulation) on a NACA4412 profile at 5 degrees angle of attack. Reynolds number is 350000 per airfoil chord and Mach number is 0.117. Both upper and lower turbulent boundary layers are tripped respectively at 15% and 50% by roughness elements evenly spaced in the boundary layer created by a zonal immersed boundary condition (Journal of Computational Physics, Volume 363, 15 June 2018, Pages 231-255, https://www.sciencedirect.com/science...). The spanwise extent is 0.3*chord. The computation has been performed on a structured multiblock mesh with the FastS compressible flow solver developed by ONERA on 1064 MPI cores. The video shows the early stages of the calculation (equivalent to 40000 time steps) highlighting the spatial development of fine-scale turbulence in both attached boundary layer and free wake. Post-processing and flow images have been made with Cassiopée (http://elsa.onera.fr/Cassiopee).
Total Comments 0