CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > CFD News and Announcements > Message Display

CFD News and Announcements - Message DisplayCFD-Wiki

Post Response | Return to Index | Read Prev Msg | Read Next Msg

Short Course Announcement on "Flow Transition and Turbulence - Physical Nature and High Order DNS Code"

Posted By: Xiaoqing Zheng
Date:Fri, 26 Sep 2008, 11:03 p.m.

Short Course Announcement

Flow Transition and Turbulence - Physical Nature and High Order DNS Code

Prof. Chaoqun Liu Department of Mathematics 456 PKH, 411 S. Nedderman, Box 19408 University of Texas at Arlington Arlington, TX 76019-0408, USA Email: cliu@uta.edu http://www.uta.edu/math/courses/FTT09/

1. Date: May 11-15, 2009

2. Place: University of Texas at Arlington, Texas, USA

3. Principal Lecturer

Yury S. Kachanov, PhD, Professor Institute of Theoretical and Applied Mechanics Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia Email: kachanov@itam.nsc.ru

Prof. Kachanov is the first finder of the C-type flow transition by his experiment and a worldwide recognized authority on flow transition and turbulence.

4. Content:

Part I Physical Nature -Turbulence Origin in Boundary-Layer Flows, Predominant Mechanisms and Applications (Yury S. Kachanov)

1) Introduction 2) What is turbulence? The problem of its definition and the solution of this problem. 3) Turbulence origin and its practical significance. 4) Transition scenarios and characteristic stages. 5) Classes and types of instability of laminar boundary layers. 6) Basic ideas of experimental approaches to the transition and turbulence researches. 7) Three bright examples of flow instabilities. 8) Boundary-layer receptivity to various external perturbations. 9) Three bright examples of the boundary-layer receptivity problems. 10) Nonlinear interactions of instability modes. Role of resonances. 11) Formation of vortical structures at late stages of turbulence origin and their universality. 12) Turbulence production mechanisms in transitional and turbulent flows and their similarity. 13) Deterministic turbulence – myth or reality? 14) Transition prediction approaches. 15) Control of boundary layer transition. 16) Control of turbulent boundary layers. 17) Concluding remarks.

Part II Direct Numerical Simulation for Flow Transition (Chaoqun Liu)

1) Governing equations of fluid motion 2) Detailed conservative Navier-Stokes equation in a curvilinear coordinate 3) Orthogonal body-fitted grid generation 4) High order compact scheme and filter 5) High order formula for boundary grid points 6) Runge-Kutta and implicit time marching 7) Universal high order subroutine for conservation and accurate numerical derivatives 8) MPI parallel computation 9) Numerical examples of flow transition

Part III DNS Code Practice (Chaoqun Liu)

5. Contact:

Class seats are very limited and early registration is encouraged. For more information, please contact:

Prof. Chaoqun Liu Department of Mathematics 456 PKH, 411 S. Nedderman, Box 19408 University of Texas at Arlington Arlington, TX 76019-0408, USA Email: cliu@uta.edu Phone: 817-272-5151 Fax: 817-272-5802

6. Web Link: http://www.uta.edu/math/courses/FTT09/

7. Feedback:

Please send your feedback to cliu@uta.edu

Flow Transition and Turbulence


Post Response

Your Name:
Your Email Address:
Subject:
Message:
If you'd like to include a link to another page with your message,
please provide both the URL address and the title of the page:
Optional Link URL:
Optional Link Title:
If you'd like to include an image (picture) with your message,
please provide the URL address of the image file:
Optional Image URL:
If you'd like email notification of responses, please check this box:
 
Post Response | Return to Index | Read Prev Msg | Read Next Msg
Go to top Go to top
CFD-Wiki