|
[Sponsors] |
CFD News and Announcements - Message Display |
Post Response | Return to Index | Read Prev Msg | Read Next Msg |
Posted By: | Advanced Design Technology |
Date: | Thu, 5 Apr 2018, 12:56 p.m. |
The cooling system of modern automobiles is the subject of intense reflections to maximize efficiency and reduce the energy consumption. Large fan design diameters are preferred to enhance thermal exchanges over the large surface of the radiator, whereas high rotational speeds are seeking to benefit from higher efficiency and low weight of the electrical motor that drive the fan. This leads to reconsider the design of the blades for these conditions for which stagger angles are very high and the aerodynamic load very low. These unconventional geometries are so far little known, but represent an interesting potential in terms of design of the cooling system, which could benefit from a high permeability favorable to the heat transfer when the vehicle is moving, even at low speed.
The aim of this paper is to apply 3D inverse design method coupled with multi-objective/multi-point automatic optimization method to design a low loaded axial fan. In this approach Design of Experiment Method (DoE) is used to create a Response Surface (RSM) relating the various performance parameters to inverse design base design parameters. Multi-objective Genetic Algorithm (MOGA) is then run on the response surface to find the trade-offs between design parameters and constraints. All designs are evaluated by using unsteady 3D CFD simulation to create the Response Surface. An estimate of aeroacoustics far field noise is obtained by using an acoustic FW&H model. Some experimental results from a prototyped version are also presented to evaluate the accuracy of numerical simulations.
Two designs are selected by the optimization process with different compromises in term of multi-objectives performances, and their final qualities are assessed by a thermal simulation on a cooling module. These proposed new geometries represent a proof of concept that is analyzed for performance evaluation before further developments for the automotive application.
Read and download the paper in full: https://www.adtechnology.co.uk/knowledge-hub/publications/fans/low-weight-high-speed-automotive-fan-design-by-3d-inverse-method
Would you like to learn more about the design and optimization of a fan design by the inverse design method?
We are conducting a 1-Day Inverse design of Fans Workshop on Tuesday 17th of April at the Darmstadtium in Darmstadt, Germany. This unique event is in conjunction with FAN 2018 that will bring together engineers and designers interested in the unique capabilities of 3D Inverse Design technology and its application on the design and optimization of axial, mixed-flow and centrifugal fans.
The Workshop will be a great opportunity to learn about cutting-edge TURBOdesign solutions from ADT specialists, ask questions and gain an in-depth understanding of the latest features in the software to ensure an overall knowledge and hence more effective use of our design.
Register for our fan workshop: https://info.adtechnology.co.uk/fans-2018
Post Response | Return to Index | Read Prev Msg | Read Next Msg |