CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Events > Event Record #25780

CFD Events Calendar, Event Record #25780

Online training session on thermo-acoustic instabilities
A short online training course on Thermo-acoustic Instabilities will be organized by CERFACS in May/June. It aims at introducing this topic to engineers, PhD students or researchers willing to get a brief theoretical overview on this topic. The focus will be on understanding the concepts - not on mathematics. It starts on Monday, May 28.
Date: May 28, 2018 - June 24, 2018
Location: https://cerfacs.fr/en/fundamentals-of-thermo-acoustic-instabilities-2/
Contact Email: training@cerfacs.fr
Organizer: CERFACS
Application Areas: Turbomachinery, Fire and Safety, Automotive, Aerospace
Special Fields: Combustion, Aeroacoustics & Noise
Type of Event: Online Event, International
 
Description:

Context

Coupling between acoustic waves and flames has become a central issue in the development of many modern combustion systems because of both environmental issues (noise) and the destructive interactions which acoustics can generate in combustors. Numerical tools are essential in many flames/acoustics studies but a theoretical background in acoustics and especially in acoustics for reacting flows is mandatory to tackle such problems.

Scientific content

This online training course presents the fundamental concepts of thermo-acoustic instabilities. The course content is divided in 3 consecutive weeks:
  • week 1: introduction of the phenomena
  • week 2: laws of 1D acoustic in tubes
  • week 3: interaction between a flame and acoustic
An interactive live conference will close the session and will deal with an application case where you will try to predict the stability of a system. This conference will be held during week 4.

Learning outcomes

At the end of this training, you will be able to:
  • explain the origin of thermo-acoustic instabilities in a combustor,
  • evaluate the natural frequency of a combustor,
  • make recommendations to make an unstable system become stable.

Organization

This is a fully online training session. It is divided into 5 consecutive weeks, based on learning activities delivered each week.
  • Week 1 to week 3 require around 2 hours of work per week. Learning activities are released on Monday of each week and you have 7 days to complete each week's activities. The 2 hours of work can be distributed over the week, depending on your schedule.
  • A 1 hour live interactive session will hold during week 4. This live session will deal with an applicative case. This live session will also be recorded.
  • Last week is dedicated to revising and a final exam, leading to a certificate of learning.

Our pedagogical principles

All our learning sessions are built upon evidence-based principles from cognitive psychology and learning research:
  • concepts first: the course is focused on conceptual understanding of the meaning of equations and how they apply in practical cases (Van Heuvelen, 1991).
  • active learning: the course is organized around activities especially designed to make participants interact between each other, involving a deep processing of the scientific content previously shown in short videos (Salmon, 2013).
  • long-term retention and transfer: because you need to apply what you will learn during this session in the future and in various contexts, our courses are designed using the 10 laboratory-tested principles drawn from cognitive psychology (Halpern and Hakel, 2003).
Be prepared to be engaged and to interact with a community sharing a common goal: learning the scientific content of this course.

Requirements

While this course is not focused on mathematical aspects, you need to have a clear understanding of Navier Stokes equations and a background in mathematical analysis, in particular with complex number notation.

Course Staff

This course is designed by a group composed of expert researchers from the field supervised by an expert researcher in active online learning.
  • Dr. Thierry Poinsot: Thierry is director of research at the CNRS (France), working at the Institute of Fluid Mechanics of Toulouse and scientific advisor at CERFACS Toulouse. His topics of research cover both theoretical and numerical aspect of combustion. He is one of the two authors of the famous book Theoretical and Numerical Combustion.
  • Dr. Corentin Lapeyre: Corentin Lapeyre is senior scientist at CERFACS. His phD was on numerical study of flame stability, stabilization and noise in a swirl- stabilized combustor under choked conditions.
  • Dr. J-F. Parmentier: after getting his PhD in Fluid Mechanics working on modeling of two-phase gas-particle flows, he worked for a few years on thermo- acoustic instabilities in annular combustion chambers. Since 2014 he has oriented his research specifically on learning and teaching science using active learning methods.
 
Event record first posted on April 27, 2018, last modified on April 27, 2018

[Back to Events Calendar Front Page]