# SIMPLER algorithm - SIMPLE - Revised

(Difference between revisions)
 Revision as of 21:22, 28 December 2011 (view source)Bluebase (Talk | contribs)m← Older edit Revision as of 12:33, 26 August 2012 (view source)Michail (Talk | contribs) Newer edit → Line 1: Line 1: {{stub}} {{stub}} + + The revised algorithm consist of solving the pressure equation to obtain the pressure field and solving the pressufre-correction equation only to correct the velocities. The sequence of operations can be stated as: + + 1. Start with a guessed velocity field. + 2. Calculate the cofficients for the momentum equations and hence calculate $\hat{u}, \hat{v}, \hat{w}$ from momentum equations by substituting the value of the neiboughbor velocities $u_{nb}$ + 3. Calculate the cofficients for the pressure equation, and solve it to obtain pressure field + 4. Treating this pressure field as $p^{*}$, solve the momentum equation to obtain $u^{*},v^{*},w^{*}$ + 5. Calculate the mass source $b$ and hence solve the p^{'} equation + 6. Correct the velocity field by use, by not ''do not'' correct the pressure + 7. Solve the discretization equations for other $\varphi$ if necessary + 8. Return to step 2 and repeat until convergence == References == == References ==
1. Start with a guessed velocity field. 2. Calculate the cofficients for the momentum equations and hence calculate $\hat{u}, \hat{v}, \hat{w}$ from momentum equations by substituting the value of the neiboughbor velocities $u_{nb}$ 3. Calculate the cofficients for the pressure equation, and solve it to obtain pressure field 4. Treating this pressure field as $p^{*}$, solve the momentum equation to obtain $u^{*},v^{*},w^{*}$ 5. Calculate the mass source $b$ and hence solve the p^{'} equation 6. Correct the velocity field by use, by not do not correct the pressure 7. Solve the discretization equations for other $\varphi$ if necessary 8. Return to step 2 and repeat until convergence