CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Kruzkov theorem

Kruzkov theorem

From CFD-Wiki

Revision as of 03:45, 30 September 2005 by Praveen (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

The scalar Cauchy problem


u_t + f(u)_x = 0, \ \ \ f \in C^1(\mathbb{R})

with initial condition


u(0,x) = u_o(x), \ \ \ u_o \in L^\infty(\mathbb{R})

has a unique entropy solution


u \in L^\infty(\mathbb{R}_+ \times \mathbb{R})

which fulfills (important for numerics)

  • Stability

|| u(t, \cdot)||_{L^\infty} \le || u_o ||_{L^\infty}, \mbox{ a.e. in } t \in
\mathbb{R}_+
  • Monotone solution: If u_o \ge v_o a.e. in \mathbb{R} then

u(t, \cdot) \ge v(t, \cdot) \ \ \ \mbox{ a.e. in } \mathbb{R}, \mbox{ a.e. in } t
\in \mathbb{R}_+
  • TV-diminishing: If u_o \in BV(\mathbb{R}) then

u(t, \cdot) \in BV(\mathbb{R}) \ \ \ \textrm{ and } \ \ \ TV(u(t, \cdot)) \le TV(u_o)
  • Conservation: If u_o \in L^1(\mathbb{R}) then

\int_{\mathbb{R}} u(t,x) d x = \int_\mathbb{R} u_o(x) d x, \ \ \ \mbox{ a.e. in } t
\in \mathbb{R}_+
  • Finite domain of dependence: If u, v are two entropy solutions, corresponding to initial conditions u_o, v_o \in L^\infty and



M = \max\{ | f^\prime(\phi) | : | \phi | \le \max( ||u_o||_{L^\infty},
||v_o||_{L^\infty}) \}

then


\int_{|x| \le R} | u(t,x) - v(t,x) | d x \le \int_{|x| \le R + Mt} |
u_o(x) - v_o(x) | d x

Related pages

My wiki