Introduction to turbulence
From CFD-Wiki
Nature of turbulence |
Statistical analysis |
Reynolds averaged equation |
Turbulence kinetic energy |
Stationarity and homogeneity |
Homogeneous turbulence |
Free turbulent shear flows |
Wall bounded turbulent flows |
Study questions
... template not finished yet! |
This section is currently undergoing heavy reorganization and editing. Please excuse any errors or unfinished parts. --Jola 07:01, 21 June 2007 (MDT)
Nature of turbulence
- The turbulent world around us
- What is turbulence?
- Why study turbulence?
- The cost of our ignorance
- What do we really know for sure?
Statistical analysis
- Ensemble average
- Probability
- Multivariate random variables
- Estimation from a finite number of realizations
- Generalization to the estimator of any quantity
Reynolds averaged equations and the turbulence closure problem
- Equations governing instantaneous fluid motion
- Equations for the average velocity
- The turbulence problem
- Origins of turbulence
- Importance of non-linearity
- Turbulence closure problem and eddy viscosity
- Reynolds stress equations
Turbulence kinetic energy
- Fluctuating kinetic energy
- Rate of dissipation of the turbulence kinetic energy
- Kinetic energy of the mean motion and production of turbulence
- Transport or divergence terms
- Intercomponent transfer of energy
Stationarity and homogeneity
- Processes statistically stationary in time
- Autocorrelation
- Autocorrelation coefficient
- Integral scale
- Temporal Taylor microscale
- Time averages of stationary processes
- Bias and variability of time estimators
- Random fields of space and time
- Multi-point statistics in homogeneous field
- Spatial integral and Taylor microscales
Homogeneous turbulence
- A first look at decaying turbulence
- The dissipation equation and turbulence modelling
- A second look at simple shear flow turbulence
Free turbulent shear flows
Wall bounded turbulent flows
- Introduction
- Review of laminar boundary layers
- The "outer" turbulent boundary layer
- The “inner” turbulent boundary layer
- The viscous sublayer
Credits
This text was based on "Lectures in Turbulence for the 21st Century" by Professor William K. George, Professor of Turbulence, Chalmers University of Technology, Gothenburg, Sweden.