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resumo 
 
 

Os métodos habitualmente utilizados para a simulação de injecção em 
moldes envolvem um número considerável de simplificações, originando 
reduções significativas do esforço computacional mas, nalguns casos 
também limitações. Neste trabalho são efectuadas simulações de Reaction 
Injection Moulding (RIM) com o mínimo de simplificações, através da 
utilização do software de CFD multi-objectivos CFX, concebido para a 
simulação numérica de escoamentos e transferência de calor e massa. 

Verifica-se que o modelo homogéneo para escoamentos multifásicos do 
CFX, geralmente considerado o apropriado para a modelação de 
escoamentos de superfície livre em que as fases estão completamente 
estratificadas, é incapaz de modelar correctamente o processo de 
enchimento. Este problema é ultrapassado através da implementação do 
modelo não homogéneo juntamente com a condição de fronteira de 
escorregamento livre para o ar. 

A reacção de cura é implementada no código como uma equação de 
transporte para uma variável escalar adicional, com um termo fonte. São 
testados vários esquemas transitórios e advectivos, com vista ao 
reconhecimentos de quais os que produzem os resultados mais precisos. 

Finalmente, as equações de conservação de massa, quantidade de 
movimento, cura e energia são implementadas conjuntamente para simular 
os processos simultâneos de enchimento e cura presentes no processo 
RIM. Os resultados numéricos obtidos reproduzem com boa fidelidade 
outros resultados numéricos e experimentais disponíveis, sendo 
necessários no entanto tempos de computação consideravelmente longos 
para efectuar as simulações. 
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abstract 
 

Commonly used methods for injection moulding simulation involve a 
considerable number of simplifications, leading to a significant reduction of 
the computational effort but, in some cases also to limitations. In this work, 
Reaction Injection Moulding (RIM) simulations are performed with a 
minimum of simplifications, by using the general purpose CFD software 
package CFX, designed for numerical simulation of fluid flow and heat and 
mass transfer. 

The CFX’s homogeneous multiphase flow model, which is generally 
considered to be the appropriate choice for modelling free surface flows 
where the phases are completely stratified and the interface is well defined, 
is shown to be unable to model the filling process correctly. This problem is 
overcome through the implementation of the inhomogeneous model in 
combination with the free-slip boundary condition for the air phase. 

The cure reaction is implemented in the code as a transport equation for an 
additional scalar variable, with a source term. Various transient and 
advection schemes are tested to determine which ones produce the most 
accurate results. 

Finally, the mass conservation, momentum, cure and energy equations are 
implemented all together to simulate the simultaneous filling and curing 
processes present in the RIM process. The obtained numerical results 
show a good global accuracy when compared with other available 
numerical and experimental results, though considerably long computation 
times are required to perform the simulations. 
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 Nomenclature          

Symbols:  

A Area [m2] 

A Constant in the viscosity equation [–] 

Aαβ Interfacial area per unit volume [m-1] 

Aμ Pre-exponential factor in the viscosity equation [kg/(m⋅s)] 

A1 Pre-exponential factor in the cure equation [s-1] 

A2 Pre-exponential factor in the cure equation [s-1] 

B Constant in the viscosity equation [–] 

cs Control volume  

cs Surface of the control volume  

C Degree of cure [–] 

CD Drag coefficient [–] 

Cg Solidification (gel) point [–] 

Cp Specific heat at constant pressure [J/(kg⋅K)] 

Cr Courant number [–] 

Cv Specific heat at constant volume [J/(kg⋅K)] 

dαβ Interface length scale [m] 

Dh Hydraulic diameter [m] 

e Specific internal energy [J/kg] 

Eμ Viscosity activation energy [J/mol] 

E1 Reaction activation energy [J/mol] 

E2 Reaction activation energy [J/mol] 

f Face  

F Force [N] 

Fg  Gravity force vector [N] 

Fw Wall shear force [N] 
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g  Gravity acceleration vector [m/s2] 

h Mould half thickness [m] 

h Specific enthalpy [J/kg] 

htot Specific total enthalpy [J/kg] 

H Mould thickness [m] 

k Thermal conductivity [W/(m⋅K)] 

k1 Parameter in the cure equation [s-1] 

k2 Parameter in the cure equation [s-1] 

L Mould length [m] 

Lf Position of the flow front [m] 

m Constant in the cure reaction [–] 

m Mass [kg] 

m  Mass flow [kg/s] 

Mαβ  Volumetric interface momentum transfer [N/m3] 

n Constant in the cure reaction [–] 

n  Outward normal surface vector [–] 

N Shape function  

P, p Pressure [Pa] 

P Perimeter [m] 

Q Volumetric flow rate [m3/s] 

RQ  Volumetric heat generation rate [W/m3] 

Qt Total volumetric heat of reaction [J/m3] 

r Volume fraction [–] 

R Universal gas constant [J/(mol⋅K)] 

R  Vector from the upwind node to ip [m] 

Re Reynolds number [–] 

S Cross section  

S Fluidity [m⋅s] 

S Surface  
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SC Rate of cure [s-1] 

SCp Linear source coefficient in the cure equation [s-1] 

SCv Source value in the cure equation [s-1] 

SE Volumetric heat source [W/m3] 

SEp Linear source coefficient in the energy equation [W/(m3⋅K)] 

SEv Source value in the energy equation [W/m3] 

MS  Volumetric momentum source [N/m3] 

t Time [s] 

tf Filling time [s] 

tR Time of residence [s] 

T Period [s] 

T Temperature [K] 

Ti Initial temperature [K] 

u Velocity x component [m/s] 

U  Velocity vector [m/s] 

v Velocity y component [m/s] 

V Volume [m3] 

w Velocity z component [m/s] 

W Mould width [m] 

Wv Volumetric viscous work rate [W/m3] 

x x direction [m] 

y y direction [m] 

z z direction [m] 

   

   

Greek symbols:  

β Blend factor for the advection term discretization [–] 

γ Shear rate [s-1] 

δ Identity matrix  
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Δt Time step [s] 

ΔTad Adiabatic temperature rise [K] 

Δx Length of the mesh elements [m] 

θ Quotient between the old and the new time step [–] 

μ Viscosity [kg/(m⋅s)] 

ρ Density [kg/m3] 

τw Wall shear stress [N/m2] 

φ General variable  

   

   

Subscripts:  

air Air  

in Inlet  

ip Integration point  

max Maximum value  

n Node  

out Outlet  

ref Reference  

resin Resin  

up Upwind node  

w Wall  

x x component of the vector  

y y component of the vector  

z z component of the vector  

α Phase α  

β Phase β  
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Superscripts:  

CFX Results from CFX  

hom Homogeneous model  

 inhom Inhomogeneous model  

0 Old time level  

00 Time before the old time level  

   

   

Operators:  

 • Inner product  

⊗  Tensor product  

∇  Nabla vector  

TX  Transpose of X 

  

  

Others: 
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1   Introduction          

1.1 Overview of the RIM process 

The application of synthetic polymeric materials, which are nowadays commonly used in 
all of the major market sectors, experienced a dramatic expansion in the second half of the 
20th century. Due to the continuous progress made in polymeric engineering, these 
materials can be synthesized to meet a wide range of mechanical, chemical, optical and 
electrical properties. Their low density, resulting in a relatively high specific strength and 
stiffness, their aptitude to be manufactured into complex shaped parts and, more important, 
their ability to be integrated in automatic mass production processes, which together with 
the relatively low cost of raw material, lead to the low cost of the final product, make these 
materials very attractive, specially from an economical point of view. 
 Amongst the various polymer processing techniques, injection moulding is 
certainly one of the most important, representing approximately one third of all 
manufactured polymeric parts [1, 2]. Extrusion represents approximately another third 
(32% and 36% of weight, respectively [1]). 
 Synthetic polymers can be classified in two major categories: thermoplastic 
polymers and thermosetting polymers. For thermoplastics, by far the largest volume (about 
80% of the raw material used in injection moulding [3]), the long molecules are not 
chemically joined, and thus they can be melted by heating (typically 200-350 ºC [3]), 
solidified by cooling and remelted repeatedly. Thermosets are initially made of short chain 
molecules, and upon heating or mixing with appropriate reagents, they undergo an 
irreversible chemical reaction which causes the short chain molecules to bond. This 
process leads to the formation of a rigid three-dimensional structure, which once formed 
will not remelt by heating [2, 4].  
 In Thermoplastics Injection Moulding (TIM), the hot polymer melt is pushed at 
high pressure into a cold cavity where it undergoes solidification by cooling down below 
the glass transition temperature. Although this process is extensively used for non-specific 
and undemanding applications, it presents some weaknesses which limit its use for more 
technical parts. Thermoplastics usually have lower mechanical properties than 
thermosetting polymers. Their relatively high viscosity (usually exceeding 100 kg/(m⋅s) 
[2]) requires high injection pressures (typically 50-200 MPa [3]), limiting the dimensions 
of parts to typically 1 m2. High viscosity also limits the use of reinforcements, which are 
necessary to meet more demanding requirements, and the production of parts with complex 
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shapes. In order to overcome these limitations, reactive moulding techniques have been 
developed for thermosetting polymers [2]. 
 Reactive moulding is quite different from conventional TIM, since it uses 
polymerization in the mould, instead of cooling, to form the stiff solid parts. 
 Reaction Injection Moulding (RIM) is a process for rapid production of complex 
parts through the mixing and chemical reaction of two or more components. The liquid 
components, usually isocyanate and polyol, held in separated temperature controlled tanks, 
feed to metering units. When injection begins, the valves open and the components flow at 
moderate to high pressures, typically between 10 and 20 MPa, into a mixing chamber. The 
streams are intensively mixed by high velocity impingement and due to the shape of the 
mixing chamber, and the mixture begins to polymerize, or cure, as it flows into the mould 
cavity. As the mixture is initially at low viscosity, low pressures, less than 1 MPa, are 
needed to fill the mould, typically in less than five seconds. Inside the mould, cure occurs, 
forming the polymer, solidifying and building up enough stiffness and strength such that 
the mould can be opened and the part removed, often in less than one minute. Postcuring 
may be necessary [5, 6]. Fig. 1 [7] shows the diagram of a typical RIM process. 

 
Fig. 1: Diagram of a typical RIM process [7]. 
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During RIM’s early years, its main use was for high density rigid polyurethane 
foam parts for the automotive industry, such as bumpers and fascia. Over the years it has 
developed uses in many different areas. The end use applications for RIM are nowadays so 
varied that polyurethane can be found in forms such as protective coatings, flexible foams, 
rigid foams and elastomers. Although polyurethanes comprise the majority in RIM 
processing, other types of chemical systems can be processed, for instance polyureas, 
nylons, dicyclopentadienes, polyesters, epoxies, acrylics and hybrid urethane systems [8]. 

Due to the low viscosity RIM liquids, ranging from 0.1 to 1 kg/(m⋅s), large parts 
can be manufactured with relatively small metering machines, complex shapes, with 
multiple inserts, can be fabricated and low pressures can be used to fill the moulds, and 
these may be constructed from light-weight materials often at lower costs than for TIM. 
Mould clamping forces are much lower, requiring lower cost presses. This opens up short 
production runs, and even prototype applications [5]. Low viscosity also opens options in 
reinforcement as Structural Reaction Injection Moulding (SRIM), and Reinforced Reaction 
Injection Moulding (RRIM) [8]. 
 RIM temperatures are typically lower than those for TIM, with less energy 
demands [5]. However, handling of reactive, and often hazardous liquids, requires special 
equipments and procedures. As some components freeze at room temperature, a 
temperature controlled environment is required for their shipping and storage, increasing 
the costs. Due to the low viscosity, it is difficult to seal moulds, increasing leakage and 
flash. As low viscosity liquids penetrate mould surfaces, there is the need for release 
agents, which has been a major problem for high RIM production. 
 If flow into the mould is too rapid, air may be entrained and large bubbles appear in 
the final part, which is perhaps the greatest cause of scrap. Also, due to low pressure 
during filling, it is difficult to remove air from pockets formed behind inserts and from 
corners. Thus, vent location becomes extremely important. Some of these problems can be 
prevented if moulds are filled slowly, but this can lead to short shots. 
  As asserted by [9], “Successful moulders must use RIM long enough to learn all the 
peculiarities of chemical manipulation, mould manufacture, and processing parameters. 
These typically differ for each project, resulting in a long learning curve for the few 
companies that choose to offer RIM-produced products”. This is why a better 
understanding of the injection and curing processes is important. Numerical simulations of 
these processes may be helpful to choose the chemical components, to design the mould, 
its position and vents location, and to design the process itself: shot time and inlet and 
mould temperatures. 
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1.2 Literature review 

1.2.1 Injection moulding 

As mentioned in [3] and [10], the first attempts to study the filling stage in injection 
moulding were reported by Spencer and Gilmore [11]. They visually studied the filling of 
the mould and derived an empirical equation to determine the filling time. Other important 
early flow visualization and tracer studies include the contributions from [12] and [13]. 
 Numerical simulations applied to injection moulding have basically started in the 
early 1970s. According to [2] and [14], these first developments were applied to the filling 
stage in simple geometries [15–23]. Only tubular, circular and rectangular shapes were 
considered, allowing the flow to be accurately assumed as unidirectional. The temperature 
field was two-dimensional, one coordinate in the flow direction and the other in the 
thickness direction, leading to the so-called 1½D approach. The injected polymer was 
assumed to be a Newtonian fluid, and finite difference techniques were used to numerically 
solve the set of balance equations. 
 In [15], one-dimensional flow analysis was coupled with a heat balance equation 
for a rectangular cavity. The work presented in [16, 17] dealt with the filling of a disc 
mould, using the assumption of a radial creeping flow, and [21] modelled one-dimensional 
tubular flow of polymer melts. 
 In order to expand the previous approaches to more realistic geometries, conformal 
mapping [24–26] or decomposition of complex shape cavities in a number of simple 
elements [27, 28] were used to extend the 1½D approach to more complex flow situations. 
However, these methods lack sufficient generality to be satisfactory and the solution 
accuracy strongly depends on how the geometry is partitioned, requiring astute judgment 
from the user. 
 The real breakthrough came with the development of a general 2½D approach, 
originally proposed in [29], combining finite elements along the midsurface of the cavity 
with finite differences along the thickness direction. The pressure field was solved in two 
dimensions by finite element method and the temperature and velocity fields were solved 
in three dimensions by means of a mixed finite element / finite difference method. 
 However, based on the Hele-Shaw approximation, the 2½D approach was unable to 
represent the complex flow kinematics of the flow front region, the so-called fountain 
flow, see Fig. 2 [30], first reported in [31]. The description of this phenomenon was 
addressed by many authors by means of experimental [32–36], analytical [37–39] and 
numerical [33, 40−45] methods, leading to approximate models able to capture its basic 
flow kinematics without resolving the complex 3D flow details. 
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(a) (b) 

Fig. 2: Kinematics of fountain flow. 
(a) Reference frame of mould; (b) Reference frame of the moving flow front. [30] 

 Different techniques have been used to handle the time-dependency of the flow 
domain during filling. One solution consisted in the use of the control volume method 
[46-48], while alternative solutions included the use of boundary fitted coordinates [49, 50] 
or the use of a front tracking and remeshing techniques [51–53]. 
 To date several commercial and research three-dimensional simulation programs 
for injection moulding have been developed. In particular, [54] developed a three-
dimensional finite-element code for predicting the velocity and pressure fields governed by 
the generalized Navier-Stokes equations, [55] analysed the three-dimensional mould filling 
of an incompressible fluid and the shape of the fountain flow front, [56, 57] incorporated 
the polymer compressibility, by treating its density as a function of temperature and 
pressure, in a three-dimensional mould filling process. 

1.2.2 Reaction Injection Moulding 

As both thermoplastics and reaction injection moulding are basically governed by the same 
flow kinematics, most of the developments made in the simulation of the filling stage of 
thermoplastics are applicable to reaction injection moulding. 

Early studies were dedicated to the static analysis of heat transfer and cure, on the 
assumption that the curing stage could be decoupled from the filling stage [58, 59]. More 
realistic models were obtained by extending the 1½D approach to reaction injection 
moulding [39, 60–66]. The work of Castro and Macosko [39], presenting experimental and 
numerical results was of particular importance, it was considered by many authors as a 
benchmark solution (it is used also in this work, in Section 4.2 and Section 4.3, as a 
benchmark solution).  
 Extensions to the 2½D approach were only reported more recently [2, 67–71], and 
3D simulations have already been reported in some works [72–76]. 
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1.3 The 2½D Hele-Shaw flow approach 

Despite many commercial codes’ ability to perform 3D injection moulding simulations, the 
2½-dimensional Hele-Shaw approach remains the standard numerical framework for 
simulation of injection moulding. Therefore, it becomes important to succinctly describe 
its assumptions and formulation, and to discuss its advantages and limitations relatively to 
a full three-dimensional approach. 
 Injection moulding is generally characterized by the part thickness being much 
smaller than its overall dimensions and by the high viscosity of the polymer (the latter is 
not entirely valid for RIM resins), resulting in low ratios of the inertia force to the viscous 
forces (characterized by low Reynolds numbers). In the Hele-Shaw flow formulation, the 
inertia effect and the velocity component and thermal convection in the gap-wise direction 
are neglected. Moreover, due to small thickness of the part, the velocity gradient in the 
gap-wise direction is considered to be much larger than in the other directions. Thus, 
denoting the planar coordinates by x and y, the gap-wise coordinate by z, and the velocity 
components by u, v and w, respectively, the continuity and momentum equations are 
reduced to [77, 78]: 

 ( ) ( )u v
0

t x y
∂ ρ ⋅ ∂ ρ ⋅∂ρ

+ + =
∂ ∂ ∂

    (1) 

 p u 0
x z z

⎛ ⎞∂ ∂ ∂
− + μ ⋅ =⎜ ⎟∂ ∂ ∂⎝ ⎠

 (2) 

 p v 0
y z z

⎛ ⎞∂ ∂ ∂
− + μ ⋅ =⎜ ⎟∂ ∂ ∂⎝ ⎠

 (3) 

The boundary conditions for u and v are [77]: 

 u v 0 at z h on mold wall( )= = = ±  (4) 

 u v 0 at z 0 on middle plane
z z

∂ ∂
= = =

∂ ∂
( )  (5) 

As the pressure is independent of the z direction, by integrating twice equations 
(2) and (3), and taking into account the boundary conditions, one arrives to: 

 
h
z

p zu dz
x

∂
= − ⋅

∂ μ∫  (6) 

 
h
z

p zv dz
y

∂
= − ⋅

∂ μ∫  (7) 
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 By integrating equation (1) between z = 0 and z = h, the continuity and momentum 
equations are merged into a single Poisson-like equation in terms of pressure and fluidity 
[14, 77]: 

 
h
0

p pdz S S 0
t x x y y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ρ − ⋅ − ⋅ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∫  (8) 

where S is the fluidity, expressed as [77]: 

 
2h

0
zS dz= ρ ⋅
μ∫  (9) 

 The two above equations could be even further simplified if assuming constant 
polymer density. 

The gap-wise direction averaged velocities may be obtained as: 

 

2h
0

z dz
pu
x h

∂ μ= − ⋅
∂

∫
 (10) 

 

2h
0

z dz
pv
y h

∂ μ= − ⋅
∂

∫
 (11) 

Besides the velocity and heat convection in the gap-wise direction being omitted, 
the heat conduction in the flow directions is assumed to be negligible when compared with 
that in the gap-wise direction [14, 78]. The energy equation is then simplified to [77]: 

 2
R

T T T TCp u v k Q
t x y z z

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
ρ ⋅ ⋅ + ⋅ + ⋅ = ⋅ + μ ⋅ γ +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (12) 

The term (μ⋅ γ 2) represents the heat generated by viscous dissipation, and RQ  the rate of 

heat generation due to chemical reaction. γ  is the shear rate, which, according to the 
assumptions mentioned above, is expressed as [79]: 

 
2 2u v

z z
⎛ ⎞ ⎛ ⎞∂ ∂

γ = +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (13) 

or: 

 
2 2z p p

x y
⎛ ⎞ ⎛ ⎞∂ ∂

γ = ⋅ +⎜ ⎟ ⎜ ⎟μ ∂ ∂⎝ ⎠ ⎝ ⎠
 (14) 
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However, for typical RIM situations, the viscous dissipation term in the energy equation 
can be neglected when compared to the heat generation term due to the cure reaction [39, 
80].  

Equations (8) and (12) for pressure and temperature, are the basic equations of the 
Hele-Shaw approximation for mould filling in thin cavities [78]. Equation (8) is commonly 
solved by the finite-element method and equation (12) by the finite-difference method 
[14]. 

Due to the Hele-Shaw formulation assumptions and simplifications mentioned 
above, the usage of computational storage and CPU time can be considerably reduced 
when compared with the case of a full three-dimensional (unsteady) formulation. But, 
although its successful applications to the injection moulding process, it has its limitations 
mostly owing to those assumptions [14]. 

The inertia and three-dimensional effects may become significant enough to 
influence the flow, especially in complex thick parts, in situations of branching flow, 
where the part thickness changes abruptly, or in regions around special features such as 
bosses, corners and ribs. For the RIM process, because of resins small viscosities, the fluid 
inertia and the gravity force cannot be omitted [14]. 
 At the filling front, the fluid moves away from the centre, spilling out like a 
fountain to the walls [5] (thus the designation “fountain flow”), and therefore the flow is as 
important in the transverse as in the planar directions. Simple fountain flow 
approximations have been implemented with the Hele-Shaw formulation. However, in 
view of its importance in RIM, since it determines the path and the location of each 
reactive fluid element during filling, a three-dimensional formulation is expected to 
provide more detailed and accurate information [14]. 

1.4 Motivation and objectives 

The core objective of this work is to assess the potential of the commercial general-purpose 
CFD software, CFX-5 (recently renamed ANSYS CFX), a fully implicit, unstructured, 
node centred, finite-volume based code, to simulate the complete three-dimensional 
behaviour of the RIM simultaneous filling and curing processes. 

Because of the inherent RIM process and parts characteristics, such as resins’ low 
viscosities, common complex geometries possibly with the presence of inserts, together 
with the importance to accurately determine the flow behaviour at the flow front region, a 
full 3D approach seems to be much more valuable, relatively to the 2½D approach, than in 
simulations of the TIM process. 
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 Despite the existence of commercial injection moulding software packages able to 
perform 3D mould filling analysis, the 2½D approach, as previously mentioned, is still the 
standard analysis in injection moulding simulations and, extremely little has been made 
regarding the simulation of this important kind of industrial process making use of general-
purpose CFD software packages. 
 Although three-dimensional simulations for injection moulding are still notorious 
for their excessive computation time requirements, as computer performances increase 
they are anticipated to increase in the near future [14]. It is reported in [81] that in 2003 the 
same CFD problem could be run over 100 times faster than in 1996 (7 years before), a 
factor of 30 due to increase in processors speed (double every 18 months, as stated by the 
modern and most popular formulation of the Moore’s law [82]), and the remaining due to 
enhancements in numerical methods and faster solver algorithms. Additionally, the 
possibility to run calculations on a network of PCs, something unavailable not too long 
ago, and improvements in parallel computing algorithms, will tend towards faster time 
solutions to many CFD problems [81] at relatively low hardware costs. 

Commercial multi-purpose CFD software packages are usually cheaper than 
commercial specialized injection moulding packages, and are able to perform numerical 
simulations of many other varieties of processes, making them a much more versatile and 
valuable tool than the specialized packages usual in injection moulding. 
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2   Simulation of the filling process     

2.1 The homogeneous model 

2.1.1 Physical model  

The process of an enclosed volume being filled with a fluid A and displacing the original 
fluid B, usually air, is common in engineering practice. The filling of a mould is an 
example of it. This process on its own, even not considering the energy and the chemical 
reaction, is complex, as it is a transient two-phase free surface flow. 

For this type of flows, where the phases are completely stratified and the interface 
is well defined, it makes sense to assume that both phases share a single velocity field [83]. 
Thus, choosing the homogeneous model of CFX, the flow is described by [83]: 
the equation of conservation of total mass: 

 U 0
t

( )∂ρ
+ ∇ • ρ⋅ =

∂
 (15) 

the momentum equations: 
 x direction: 

 

x

2

M

u u u v u w
t x y z

p u u v u w2 S
x x x y y x z z x

( ) ( ) ( ) ( )∂ ρ ⋅ ∂ ρ ⋅ ∂ ρ ⋅ ⋅ ∂ ρ ⋅ ⋅
+ + + =

∂ ∂ ∂ ∂

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− + μ ⋅ + μ ⋅ + + μ ⋅ + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 (16) 

 y direction: 

 

y

2

M

v u v v v w
t x y z

p v u v v w2 S
y x x y y y z z y

( ) ( ) ( ) ( )∂ ρ ⋅ ∂ ρ ⋅ ⋅ ∂ ρ ⋅ ∂ ρ ⋅ ⋅
+ + + =

∂ ∂ ∂ ∂

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− + μ ⋅ + + μ ⋅ + μ ⋅ + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 (17) 

 z direction: 

 

z

2

M

( w) ( u w) ( v w) ( w )
t x y z

p w u w v wμ μ 2μ S
z x x z y y z z z

∂ ρ ⋅ ∂ ρ ⋅ ⋅ ∂ ρ ⋅ ⋅ ∂ ρ ⋅
+ + + =

∂ ∂ ∂ ∂

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− + ⋅ + + ⋅ + + ⋅ +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 (18) 
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 or, in general vector form: 

 ( )T
M

U U U p U U S
t

( ) ( ) ( )∂ ρ ⋅ ⎡ ⎤+ ∇ • ρ ⋅ ⊗ = ∇ • − ⋅ δ + μ ⋅ ∇ ⊗ + ∇ ⊗ +⎢ ⎥⎣ ⎦∂
 (19) 

the conservation of mass of phase α: 

 
r

r U 0
t

( ) ( )α α
α α

∂ ⋅ ρ
+ ∇ • ⋅ ρ ⋅ =

∂
 (20) 

and the constraint that the two phases completely fill up the available volume: 

 r r 1α β+ =  (21) 

 Therefore, the flow is characterized by 6 equations (5 of them partial differential 
equations) and 6 unknowns (p, u, v, w, rα and rβ). 

In these equations, ρ and µ are the volume fraction weighted mixture density and 
viscosity evaluated as [83]: 

 r rα α β βρ = ρ ⋅ + ρ ⋅  (22) 

 r rα α β βμ = μ ⋅ + μ ⋅  (23) 

SM represents the source of momentum due to internal forces, the gravity in this case, and 
is given by [83]: 

 ( )M refS g= ρ − ρ ⋅  (24) 

where ρref is the reference density. 

2.1.2 Numerical model 

CFX is based on the Finite Volume Method (FVM), and each node in the mesh is at the 
centre of a finite control volume, Fig. 3. 
 The partial differential equations are integrated over all the control volumes, using 
Gauss’ Divergence Theorem to convert volume integrals on to surface integrals: 

 
V S

dV n dS∇ ⋅ φ = ⋅ φ∫ ∫  (25) 

where n  represents the outward normal surface vector. 
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Fig. 3: Representation of the control volume associated with each mesh node. 

As the control volume surface is composed by a series of surface segments, or 
faces, the surface integrals can be transformed into a sum of integrals over the faces [84]: 

 
fS f

n dS n dS
⎛ ⎞
⎜ ⎟⋅ φ = ⋅ φ
⎜ ⎟
⎝ ⎠

∑∫ ∫  (26) 

These face integrals are then discretely represented at integration points, located at the 
centre of each face: 

 ( )ip ip ip
f ipf

n dS n A
⎛ ⎞
⎜ ⎟⋅ φ ≈ ⋅ ⋅ φ
⎜ ⎟
⎝ ⎠

∑ ∑∫  (27) 

Aip being the area of the face associated with the integration point. 
According to this, the discrete forms of the governing equations are [83]: 

the equation of conservation of total mass: 

 ( )ipipV
dV U n A 0

t

⎛ ⎞∂ ⎜ ⎟ρ + ρ⋅ • ⋅ =
⎜ ⎟∂ ⎝ ⎠

∑∫  (28) 

the momentum equations: 
 x direction: 

 

( )

x

ip ip x ip
ip ipV

x y z M
ip ip

u dV m u n A p
t

u u v u w2 n n n A S V
x y x z x

⎛ ⎞∂ ⎜ ⎟ρ ⋅ + ⋅ = − ⋅ ⋅ +
⎜ ⎟∂ ⎝ ⎠
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎪ ⎪μ ⋅ ⋅ ⋅ + + ⋅ + + ⋅ ⋅ + ⋅⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑∫

∑
 (29) 
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 y direction: 

 

( )

y

ip ip y ipip ipV

x y z M
ip ip

vdV m v n A p
t

v u v v wn 2 n n A S V
x y y z y

⎛ ⎞∂ ⎜ ⎟ρ ⋅ + ⋅ = − ⋅ ⋅ +
⎜ ⎟∂ ⎝ ⎠
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎪ ⎪μ ⋅ + ⋅ + ⋅ ⋅ + + ⋅ ⋅ + ⋅⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑∫

∑
 (30) 

 z direction: 

 

( )

z

ip ip z ip
ip ipV

x y z M
ip ip

w dV m w n A p
t

w u w v wn n 2 n A S V
x z y z z

⎛ ⎞∂ ⎜ ⎟ρ ⋅ + ⋅ = − ⋅ ⋅ +
⎜ ⎟∂ ⎝ ⎠
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎪ ⎪μ ⋅ + ⋅ + + ⋅ + ⋅ ⋅ ⋅ + ⋅⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑∫

∑
 (31) 

and the mass conservation equation of phase α [85]: 

 ( )ipipV
r dV r U n A 0

t α α α α

⎛ ⎞∂ ⎜ ⎟ρ ⋅ + ⋅ ρ ⋅ • ⋅ =
⎜ ⎟∂ ⎝ ⎠

∑∫  (32) 

ipm  being the discrete mass flow rate through a face of the finite volume, obtained from 
the preceding iteration as [86]: 

 ( )ip ip
m U n A= ρ⋅ • ⋅  (33) 

nx, ny and nz are the Cartesian components of the outward normal surface vector, and V the 
volume of the control volume. 

Choosing the second order backward Euler scheme, the transient term on the 
equation of conservation of total mass (28) is approximated as [87]: 

 
( ) ( ) ( )2 0 00

V

V 1dV 2 1
t t 1

⎛ ⎞ ⎧ ⎫∂ ⎪ ⎪⎡ ⎤⎜ ⎟ρ ≈ ⋅ ⋅ + θ ⋅ θ ⋅ ρ − + θ ⋅ ρ + ρ⎨ ⎬⎢ ⎥⎣ ⎦⎜ ⎟∂ Δ θ ⋅ + θ⎪ ⎪⎩ ⎭⎝ ⎠
∫  (34) 

and, on the momentum equations (29), (30) and (31) as: 

 

( ) ( ) ( )

i
V

2 0 0 00 00
i i i

U dV
t

V 1 2 U 1 U U
t 1

⎛ ⎞∂ ⎜ ⎟ρ ⋅ ≈
⎜ ⎟∂ ⎝ ⎠

⎧ ⎫⎪ ⎪⎡ ⎤⋅ ⋅ + θ ⋅ θ ⋅ρ ⋅ − + θ ⋅ρ ⋅ + ρ ⋅⎨ ⎬⎢ ⎥⎣ ⎦Δ θ ⋅ + θ⎪ ⎪⎩ ⎭

∫
 (35) 
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where Ui represents the i component of the velocity vector, 0 denotes the old time 
level, 00 the time before the old time level, and θ is the quotient between the old and the 
new time step: 

 
0 0 00

0
t t t
t t t

Δ −
θ = =

Δ −
 (36) 

At this point, the values of the variables and of the derivatives at the integration 
points must be obtained from the values of the variables stored at the mesh nodes. The 
value of the pressure p at ip is evaluated using finite element shape functions (linear in 
terms of parametric coordinates) [83]: 

 ( )ip n nip
n

p N p⎡ ⎤= ⋅⎢ ⎥⎣ ⎦∑  (37) 

where Nn is the shape function for node n, and pn the value of p at the node n. For the 
diffusion terms, the derivatives at the integration points are also evaluated making use of 
shape functions. For example, the derivative of φ in the x direction at ip is obtained as [83]: 

 n
n

ip ipn

N
x x

⎡ ⎤⎛ ⎞ ⎛ ⎞∂∂φ ⎢ ⎥= ⋅ φ⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑  (38) 

On the advection terms, a variable φ at the integration points is obtained as: 

 ( )ip up Rφ = φ + β ⋅ ∇φ •  (39) 

where φup is the value of φ at the upwind node, φ∇  is the upwind gradient of φ, R  is the 

position vector from the upwind node to ip, and β is a blend factor. Different values of β 
produce different advection schemes. If β = 0 the scheme is a first order Upwind 
Differencing Scheme (UDS), if β = 1, the scheme is a Second Order Upwind (SOU) biased 
scheme. Here, the advection scheme chosen for the total mass and momentum equations is 
based on that of [88], the high resolution scheme, where β is variable and locally computed 
to be as close as possible to 1 without violating boundedness principles. 

However, for free surface applications, this scheme still causes too much numerical 
diffusion to the volume fraction equation. Instead, in order to keep the interface sharp, and 
as the order of accuracy is not the most important when the solutions are inherently 
discontinuous, when the “free surface flow” option is selected, CFX uses a compressive 
differencing scheme for the advection term of the volume fraction equation. This is made 
allowing β > 1, but reducing it as much as necessary to still maintain boundedness [85]. A 
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compressive transient scheme is also used for the transient term in the volume fraction 
equation. 

2.1.3 Case study 

A simple test case, the filling of a space between two parallel plates with a resin with 
constant density and viscosity, as shown in Fig. 4, was simulated. The width of the plates is 
considered to be infinite, so a two-dimensional approach is performed.  

 
Fig. 4: Geometry of the simulated test case. 

As CFX does not have a 2D solver, a three-dimensional simulation, with an 
one-element-thick mesh and symmetry boundary conditions imposed on the “front” and 
“back” faces, has to be performed. This applies whenever a two-dimensional simulation is 
mentioned in this work. 

The properties of the filling fluid were chosen to be similar to those of the common 
RIM resins: density 1000 kg/m3 and viscosity 0.05 kg/(m⋅s). The space between the plates 
is initially filled with air, whose density and viscosity, taken as constant, are 1.185 kg/m3 
and 1.831×10-5 kg/m⋅s, respectively. 

The imposed boundary conditions are: a parabolic velocity profile with an average 
velocity of 0.1037 m/s at the inlet, pressure equal to zero at the outlet, and the condition of 
no slip on the walls. The values for the inlet average velocity and for the thickness H were 
chosen to be the same used for the mould modelled in Section 4.2.  

The Reynolds number may be obtained as: 

 hU DRe ρ ⋅ ⋅
=

μ
 (40) 

where Dh is the hydraulic diameter defined as [89]: 
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 h
4 AD

P
⋅

=  (41) 

which, for a rectangular cross section with infinite width W, takes the value: 

 
W

h h
4 W HD D 2 H

2 W H → ∞

⋅ ⋅
= = ⋅

⋅ +
,

( )
 (42) 

Thus, the Reynolds number is approximately 13 for the resin and 43 for the air. The 
flow is therefore unquestionably laminar, and the parabolic velocity profile imposed at the 
inlet boundary makes sense as a fully developed laminar flow. The velocity profile of the 
air at the outlet boundary is also expected to be parabolic. 

Considering the control volume surrounded by the dashed line represented in 
Fig. 5: 

 
Fig. 5: Representation of the control volume and forces. 

and applying the Newton’s Second Law of motion in the x direction and an integral 
balance, one obtains [89]: 

 ( ) ( )x
cv cs

d dF m u u dV u U n dA
dt dt

⎛ ⎞
⎜ ⎟= ⋅ = ⋅ ρ + ⋅ ρ ⋅ •
⎜ ⎟
⎝ ⎠

∑ ∫∫∫ ∫∫  (43) 

where cv designates the control volume and cs its surface. 
Being the velocity on the walls zero, and assuming that the velocity profile at the 

outlet is parabolic due to the flow being laminar, as at the inlet, the second term on the 
right side of equation (43) reduces to: 

 
( )

( )

2 2

cs outlet inlet
2

resin air

u U n dA u dA u dA

6 U H W
5

⋅ ρ ⋅ • = ρ ⋅ − ρ ⋅

= − ⋅ ⋅ ⋅ ⋅ ρ − ρ

∫∫ ∫∫ ∫∫
 (44) 

where W indicates the width of the control volume. 
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Assuming a flat flow front, the density is constant on each cross section. Thus, the 
first term on the right side of equation (43) may be rewritten as: 

 
L

cv 0 S

d du dV u dA dx
dt dt

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟⋅ρ = ρ ⋅

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∫∫∫ ∫ ∫∫  (45) 

where S indicates a cross section. But, because of conservation of mass, and as the fluids 
are considered incompressible, the volume flow rate is constant: 

 in in
S

u dA U A U H W constant( )= ⋅ = ⋅ ⋅∫∫  (46) 

Then, equation (45) may be simplified as: 

 ( ){ }resin air
cv

d du dV H W U Lf L Lf
dt dt

⎛ ⎞
⎜ ⎟ ⎡ ⎤⋅ ρ = ⋅ ⋅ ⋅ ⋅ ρ + − ⋅ ρ⎣ ⎦⎜ ⎟
⎝ ⎠
∫∫∫  (47) 

As the plates are parallel and therefore the cross section area is constant, the 
position of the flow front, Lf, may be obtained by integrating the inlet velocity over the 
time: 

 
t

0
Lf U dt= ∫  (48) 

leading finally to: 

 
( )

( )}
resin air air

cv
2

resin air

d dUu dV H W Lf L
dt dt

U

⎛ ⎞ ⎧⎪⎜ ⎟ ⎡ ⎤⋅ρ = ⋅ ⋅ ⋅ ⋅ ρ − ρ + ⋅ρ⎨ ⎣ ⎦⎜ ⎟ ⎪⎩⎝ ⎠

+ ⋅ ρ − ρ

∫∫∫
 (49) 

If the inlet velocity is constant, the derivative on the right side of the above equation is 
zero, and the sum of forces is therefore: 

 ( )2
x in in out out resin air

0

1F P A P A Fg Fw U H W
5

=

= ⋅ − ⋅ − − = − ⋅ ⋅ ⋅ ⋅ ρ − ρ∑  (50) 

The gravity force, Fg, is achieved by integrating (ρ⋅g) over the control volume, 
which considering again that the density is constant on each cross section, and that the 
cross section area is constant and equal to H⋅W, leads to: 
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 ( )
L

resin air air
cv 0

Fg g dV g H W dx g H W Lf L⎡ ⎤= ρ ⋅ = ⋅ ⋅ ⋅ ρ = ⋅ ⋅ ⋅ ⋅ ρ − ρ + ⋅ρ⎣ ⎦∫∫∫ ∫  (51) 

The wall shear stress is obtained, for Newtonian fluids, as: 

 w
wall

du
dy @

⎡ ⎤
τ = μ ⋅⎢ ⎥

⎣ ⎦
 (52) 

which, for a laminar flow with parabolic velocity profile may be reworked as: 

 w
6 U

H
⋅ μ ⋅

τ =  (53) 

and the walls shear force, Fw, is obtained by integrating τw over the walls: 

 

( )

L L

w 2
walls 0 0

resin air air2

6 U 12 U H WFw dA 2 W dx dx
H H

12 U H W Lf L
H

⋅ μ ⋅ ⋅ ⋅ ⋅
= τ = × ⋅ = ⋅ μ

⋅ ⋅ ⋅ ⎡ ⎤= ⋅ ⋅ μ − μ + ⋅μ⎣ ⎦

∫∫ ∫ ∫
 (54) 

Note that, due to the fountain flow, the velocity profile at the flow front region is 
not parabolic, and therefore there is an error on the above expression for Fw. However, as 
the flow front region is small compared with the total length L, this error may be neglected. 

Finally, inserting the expressions of equations (51) and (54) into equation (50), the 
inlet pressure, Pin, is obtained as: 

 
( )

( ) ( )

in resin air air

2
resin air air resin air2

P g Lf L

12 U 1Lf L U
5H

⎡ ⎤= ⋅ ⋅ ρ − ρ + ⋅ ρ⎣ ⎦

⋅ ⎡ ⎤+ ⋅ ⋅ μ − μ + ⋅ μ − ⋅ ⋅ ρ − ρ⎣ ⎦
 (55) 

On this last equation, the density and viscosity of the air could be fairly neglected, as they 
are considerably smaller than those of the resin: ρair/ρresin ≅ 0.12% and μair/μresin ≅ 0.04%.  

 
2

in resin resin resin2
12 U 1P g Lf Lf U

5H
⋅

≅ ⋅ ⋅ρ + ⋅ ⋅μ − ⋅ ⋅ρ  (56) 

The errors caused by this simplification would be, for Lf = 0.1L, 1 % on the first term of 
the right side of the equation, 0.3 % on the second term and 0.12 % on the last term. For 
Lf = 0.5L, the errors would be 0.12 %, 0.04 % and 0.12 %, respectively. 

On the CFX model, the buoyancy reference density, ρref, was set to the air density. 
This is interpreted as a momentum source on equation (19) equal to: 
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 M ref airS g g( ) ( )= ⋅ ρ − ρ = ⋅ ρ − ρ  (57) 

which means that the air hydrostatic pressure effect is omitted. Consequently, to obtain the 
inlet pressure according to the CFX homogeneous model, Pin

hom, the term L⋅ρair shall be 
withdrawn from the first term of the right side of equation (55): 

 
( )

( ) ( )

hom
in resin air

2
resin air air resin air2

P g Lf

12 U 1Lf L U
5H

= ⋅ ⋅ ρ − ρ

⋅ ⎡ ⎤+ ⋅ ⋅ μ − μ + ⋅μ − ⋅ ⋅ ρ − ρ⎣ ⎦
 (58) 

This causes an error of 1.2 % on the first term of the right side of this last equation, for 
Lf = 0.1L, and 0.24 % for Lf = 0.5L. The last term on equations (55) and (58) corresponds 
only to 2.1 Pa. 

To calculate the value of the pressure at each position x, the velocity profile is 
considered to be parabolic at each cross section, which is valid for the whole domain 
except at the vicinity of the flow front. The same previous analysis is performed, except 
that this time the control volume is considered to comprise only the region between a cross 
section at the position x and the outlet. Thus the pressure depends on x as: 

 

( ) ( )

( ) ( )

( )

( ) ( )

resin air

resin air2

2
resin air

air air2

g Lf x L Lf

12 U Lf x L Lf for x Lf
H

1P x U
5

12 Ug L x L x for x Lf
H

( )

( )

( )

⎧ ⎡ ⎤⋅ − ⋅ρ + − ⋅ρ⎣ ⎦⎪
⎪ ⋅ ⎡ ⎤+ ⋅ − ⋅ μ + − ⋅μ <⎪ ⎣ ⎦
⎪
⎪

= − ⋅ ⋅ ρ − ρ⎨
⎪
⎪
⎪

⋅⎪ ⋅ − ⋅ρ + ⋅ − ⋅μ >⎪
⎩

 (59) 

and the pressure according to the CFX homogeneous model as: 

 

( ) ( )

( ) ( )

( )

( )

resin air

resin air2

2hom
resin air

air2

g Lf x

12 U Lf x L Lf for x Lf
H

1P x U
5

12 U L x for x Lf
H

( )

( )

( )

⎧ ⋅ − ⋅ ρ − ρ
⎪

⋅⎪ ⎡ ⎤+ ⋅ − ⋅μ + − ⋅μ <⎣ ⎦⎪
⎪
⎪= − ⋅ ⋅ ρ − ρ⎨
⎪
⎪
⎪

⋅⎪ ⋅ − ⋅μ >⎪
⎩

 (60) 
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On these two last equations there is a discontinuity at x = Lf. This is due to the 
assumptions of a flat flow front and of a parabolic velocity profile at every cross section, 
which is not true at the flow front region. However, this discontinuity represents only 
2.1 Pa. 

The derivative of the pressure along x is then: 

 

resin
resin 2

air
air 2

12 U
g for x Lf

H
dP x

dx
12 U

g for x Lf
H

( )

( )

( )

⎧ ⎛ ⎞⋅ ⋅μ
− ⋅ρ + <⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠

⎪= ⎨
⎪ ⎛ ⎞⋅ ⋅μ⎪ − ⋅ρ + >⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎩

 (61) 

and: 

 

( ) resin
resin air 2

hom

air
2

12 U
g for x Lf

H
dP x

dx
12 U

for x Lf
H

( )

( )

( )

⎧ ⎡ ⎤⋅ ⋅μ
− ⋅ ρ − ρ + <⎪ ⎢ ⎥

⎢ ⎥⎪ ⎣ ⎦
⎪= ⎨
⎪ ⋅ ⋅μ⎪ − >
⎪
⎩

 (62) 

Due to symmetry, only half of the geometry was modelled. The simulations were 
performed with four different meshes: mesh1 with 24 elements on the longitudinal 
direction by 5 on the transversal direction, mesh2 with 48 by 5 elements, mesh3 with 
24 by 20 elements, and mesh4 with 48 by 20 elements. 

The position of the resin-air interface after 0.35 s is represented in Fig. 6a-6d. The 
three contour lines denote the resin volume fractions of 0.9, 0.5 and 0.1. The vertical line 
indicates the theoretical position of the flow front, obtained with equation (48), which for 
t = 0.35 s results in Lf = 36.3 mm. 
 It is noticeable that, for the four meshes, the interface is captured within two mesh 
elements, proving the efficiency of the compressive discretization schemes. Increasing the 
number of elements on the longitudinal direction improves its definition in that direction, 
but does not change its position. By increasing the number of elements on the transverse 
direction, the interface position gets closer to its theoretical position, though it is always 
ahead. 
 However, the most important conclusion from these simulations is that the interface 
does not touch the walls, there existing a layer of air between the resin and the walls. This 
is clearly not in accordance with reality. The volume of resin which is ahead of the 
theoretical position of the flow front (the vertical line) shall correspond to the volume of 
resin lacking near the walls. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6: Position of the resin-air interface for t = 0.35 s. Contour lines denote the resin 
volume fractions 0.9, 0.5 and 0.1. (a) mesh1: 24×5 elements; (b) mesh2: 48×5 elements; 

 (c) mesh3: 24×20 elements; (d) mesh4: 48×20 elements. 
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In Fig. 7a-7d, the value of the resin volume fraction along the transverse direction, 
at midway between the inlet and the theoretical position of the flow front, is represented. 
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(d)  

Fig. 7: Resin volume fraction along the transverse direction, at x = ½ Lf, for t = 0.35 s. 
(a) mesh1, average volume fraction = 0.925; (b) mesh2, average volume fraction = 0.928; 
(c) mesh3, average volume fraction = 0.960; (d) mesh4, average volume fraction = 0.962. 

From this last figure, one concludes that increasing the number of mesh elements on the 
longitudinal direction does not change this behaviour, while increasing the number of 
elements on the transverse direction causes the average volume fraction to increase but the 
volume fraction on the wall nodes to decrease.  
 The viscosity is obtained as the volume fraction weighted phases’ viscosities by 
equation (23). Because the resin volume fraction on the walls is close to zero, the 
computed viscosity on the walls nodes will be much smaller than its actual value, resulting 
in a higher velocity gradient on the transverse direction next to the walls and consequently 
a wrong velocity profile. When solving the cure and energy equations, this will cause an 
error on the advection terms of those equations, which will possibly lead to completely 
wrong final results. 
 Also due to the lower computed values of the viscosity on the walls nodes, the wall 
shear stress, which is obtained by equation (52), will be lower than its real value, leading to 
a lower value of the viscous effect contribution to pressure. This is of major importance, as 
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injection pressure is one of the most important parameters to be predicted by numerical 
simulation. 
 Comparing, for t = 0.35 s, the inlet pressure obtained from CFX with mesh1 (the 
coarsest mesh), 536 Pa, and the theoretical pressure obtained with equations (58) or (60), 
574 Pa, the pressure obtained with CFX is just 6.5% lower. However, the error caused by 
the lower shear stress on the walls is masked by an increase of the gravity effect in 
pressure due to the fact that the flow front is ahead of its theoretical position. 
 The pressure due to the gravity effect may be evaluated from the hydrostatic law 
as [89]: 

 dP grav g
dx
( )

= −ρ ⋅  (63) 

 or: 

 ( )
hom

air
dP grav g

dx
( )

= − ρ − ρ ⋅  (64) 

which, considering the pressure at the outlet as zero, leads to: 

 
L

x
P grav g dx( ) = ρ ⋅∫  (65) 

or: 

 ( )
L

hom
air

x
P grav g dx( ) = ρ − ρ ⋅∫  (66) 

 The pressure due to the viscous effect may be regarded as the difference between 
the whole pressure and the pressure due to the gravity effect: P-P(grav), or Phom-Phom(grav). 
This is not completely true, as there is also a small contribution from the rate of change of 
linear momentum, 2.1 Pa, and thereby it is not designated here by P(visc). 
 Thus, the comparison will be done between Phom-Phom(grav), which is obtained as: 

 

( ) ( )

( )

( )

resin air2

2hom
resin air

hom

air2

12 U Lf x L Lf
H
1P x U
5

P grav x

12 U L x
H

⎧ ⋅ ⎡ ⎤⋅ − ⋅μ + − ⋅μ⎪ ⎣ ⎦
⎪
⎪⎛ ⎞− − ⋅ ⋅ ρ − ρ⎪⎜ ⎟ = ⎨⎜ ⎟ ⎪⎝ ⎠
⎪
⎪ ⋅

⋅ − ⋅μ⎪
⎩

( )

( )( )

for x Lf

for x Lf

<

>

( )

( )

 (67) 
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and the pressure obtained from CFX, PCFX, minus its gravity contribution: 

 ( )
L

CFX CFX CFX
air

x CFX

P P grav P g dx( )
⎛ ⎞
⎜ ⎟− = − ρ − ρ ⋅
⎜ ⎟
⎝ ⎠
∫  (68) 

In this equation, the integration is done along the centre line where the flow front has its 
most advanced position. 
 The comparison between the results obtained from the simulations and the 
theoretical ones are represented in Fig. 8a-8d. The four graphics, obtained with the four 
different meshes, are quite similar. 
 The derivative of (PCFX-PCFX(grav)) is compared with theoretical values in 
Fig. 9a-9d. It is possible to observe the error induced in (PCFX-PCFX(grav)). The derivative 
should be constant for each phase, from equation (67) it should take the value -6076 Pa/m 
for the resin and -2.2 Pa/m for the air. Instead, a nearly ramp function is observed. 

In Table 1, the results obtained at the inlet are presented and compared with the 
theoretical ones. It is interesting to notice that when increasing, the number of mesh 
elements on the transverse direction by a factor of 4, from mesh1 to mesh3 and from 
mesh2 to mesh4, the error of the obtained pressure, PCFX, which is always negative, 
increases, in absolute value, from 6.7 % to 9.0 % and from 6.3 % to 8.5 %, respectively. At 
a first glance this might look somehow unexpected, but the reason is that the error of the 
gravity contribution to pressure, PCFX(grav), which is always positive, decreased from 
10.9 % to 5.4 % and from 10.3 % to 5.0 %, respectively. This was already observed in 
Fig. 6a-6d, the interface positions obtained with mesh3 and mesh4, though always ahead, 
are closer to the theoretical position than the obtained with mesh1 and mesh2. 

Table 1: Comparison between the theoretical pressures and the pressures obtained from the 
simulations, at x = 0 (inlet), at t = 0.35 s. The errors relative to the theoretical values are 

presented inside brackets. 

 Phom Phom(grav) Phom-Phom(grav) 

Theory 573.7 355.3 218.4 
   
 PCFX PCFX(grav) PCFX-PCFX(grav) 

535.2 394.0 141.1 mesh1: 
24×5 elem. (-6.7 %) (+10.9 %) (-35.4 %) 

537.3 391.7 145.7 mesh2: 
48×5 elem. (-6.3 %) (+10.3 %) (-33.3 %) 

522.1 374.3 147.8 mesh3: 
24×20 elem. (-9.0 %) (+5.4 %) (-32.4 %) 

524.9 372.9 152.0 mesh4: 
48×20 elem. (-8.5 %) (+5.0 %) (-30.4 %) 
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Fig. 8: Comparison between the pressures obtained from simulations and theoretical 
values, for t = 0.35 s. (a) mesh1; (b) mesh2; (c) mesh3; (d) mesh 4. 
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Fig. 9: Comparison between the derivative of (PCFX-PCFX(grav)) and theoretical 
values, for t = 0.35 s. (a) mesh1; (b) mesh2; (c) mesh3; (d) mesh 4. 
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The error of (PCFX-PCFX(grav)), in absolute value, shows only a tiny decrease when 
increasing the number of mesh elements. Mesh4 has 8 times the number of mesh elements 
of mesh1, and the error only decreased from 35.4 % to 30.4 %. Thus, it seems that 
increasing the number of mesh elements, at least within reasonable limits, is not the cure 
for the problem. 

The computing time, for each mesh, to complete 0.47 s of simulation is shown in 
Fig. 10. CFX was running in double precision, in a workstation PC with a Pentium®4 
2.5 MHz processor and 512 MB RAM memory, using Windows® 2000 operating system. 
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Fig. 10: Computing time for the simulations to complete 0.47 s. 

 This unwanted behaviour has although been mentioned by some authors, who claim 
that that in filling simulations the no-slip condition on mould walls should be imposed only 
on the filled portion of the mould, as a no-slip boundary condition in the air will prevent 
the flow front from touching the walls [14, 56]. 

2.2 The inhomogeneous model 

2.2.1 Physical model 

Despite the physical model described in the previous sub-section being theoretically 
correct, it is unable to produce satisfactory results with the also physically correct no-slip 
boundary condition on the walls.  

CFX does not allow the implementation of conditional boundary conditions: it is 
not possible to define a wall boundary condition as no-slip if the volume fraction of the 
liquid phase is above a certain value, 0.5 for instance, and as free-slip if it is below. 
Therefore, the only way to prescribe a no-slip boundary condition on the filled portion of 
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the mould and a free-slip boundary condition in the empty portion is by using the CFX’s 
inhomogeneous multiphase flow model. In the inhomogeneous model, each phase has its 
own flow field and they interact via interphase transfer terms [83]. According to the 
assumption made by this model, the flow is described by: 
the equations of conservation of mass of each phase: 

 
r

r U 0
t

( ) ( )α α
α α α

∂ ⋅ ρ
+ ∇ • ⋅ ρ ⋅ =

∂
 (69) 

 
r

r U 0
t

( )
( )β β

β β β
∂ ⋅ρ

+ ∇ • ⋅ρ ⋅ =
∂

 (70) 

the momentum equations for phase α: 
 x direction: 

 

x x

2

M

r u r u r u v r u w
t x y z

u u vpr 2 r r
x x x y y x

u w
r S M

z z x

( ) ( ) ( ) ( )α α α α α α α α α α α α α α

α α α
α α α α α

α α
α α α αβ

∂ ⋅ ρ ⋅ ∂ ⋅ ρ ⋅ ∂ ⋅ ρ ⋅ ⋅ ∂ ⋅ ρ ⋅ ⋅
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∂ ∂ ∂ ∂

⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂ ∂
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⎡ ⎤∂ ∂⎛ ⎞∂
⋅ μ ⋅ + + +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

 (71) 

 y direction: 
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v w
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z z y
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 z direction: 
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 or, in general vector form: 

 

( )T
M

r U
r U U

t

r p r U U S M

( )
( )

( )

α α α
α α α α

α α α α α α αβ

∂ ⋅ ρ ⋅
+ ∇ • ⋅ ρ ⋅ ⊗ =

∂

⎡ ⎤− ⋅ ∇ + ∇ • ⋅ μ ⋅ ∇ ⊗ + ∇ ⊗ + +⎢ ⎥⎣ ⎦

 (74) 

the momentum equations for phase β, for which just the vector form is presented: 

 

( )T
M

r U
r U U

t

r p r U U S M

( )
( )

( )

β β β
β β β β

β β β β β β βα

∂ ⋅ ρ ⋅
+ ∇ • ⋅ ρ ⋅ ⊗ =

∂

⎡ ⎤− ⋅ ∇ + ∇ • ⋅ μ ⋅ ∇ ⊗ + ∇ ⊗ + +⎢ ⎥⎣ ⎦

 (75) 

and the constraint that the volume fractions sum to unity: 

 r r 1α β+ =  (76) 

By assuming a different velocity field for each phase, the flow is characterized by 
9 equations (8 of them partial differential equations) and 9 unknowns (p, uα, vα, wα, uβ, vβ, 
wβ, rα and rβ). 

As in the homogeneous model, SM represents the source of momentum due to the 
gravity force, and is given, for phase α and β, respectively, by: 

 ( )M refS r gα α α= ⋅ ρ − ρ ⋅  (77) 

 ( )M refS r gβ β β= ⋅ ρ − ρ ⋅  (78) 

Mαβ and Mβα are interphase momentum transfer terms, and they represent, respectively, the 
force per unit volume exerted by phase β on phase α, and by phase α on phase β. These 
interfacial forces are equal in absolute value and opposite in direction [83]: 

 M Mαβ βα= −  (79) 

As both phases, resin and air, are continuous, there is not any implemented model in CFX 
for Mαβ. It is simply defined as [83, 90]: 

 ( )DM C A U U U Uαβ αβ αβ β α β α= ⋅ρ ⋅ ⋅ − ⋅ −  (80) 

where CD is a non-dimensional drag coefficient, ραβ is the mixture density given by: 

 r rαβ α α β βρ = ρ ⋅ + ρ ⋅  (81) 

and Aαβ is the interfacial area per unit volume, given by: 
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r r

A
d
α β

αβ
αβ

⋅
=  (82) 

where dαβ is a user-specified interface length scale. 
CFX requires the definition of CD and dαβ. However, substituting the expressions of 

equations (81) and (82) into equation (80), leads to: 

 ( ) ( )DCM r r r r U U U U
dαβ α β α α β β β α β α

αβ
= ⋅ ⋅ ⋅ ρ ⋅ + ρ ⋅ ⋅ − ⋅ −  (83) 

from which one concludes that what matters is the quotient CD/dαβ and not their individual 
values. This was checked by setting in CFX different values of CD and dαβ but keeping 
their quotient constant, and exactly the same results were obtained. 

It is interesting to notice that as the volume fraction of one of the phases 
approximates zero, the term Mαβ vanishes. Therefore, as one would expect, Mαβ is only 
meaningful at the interface. 

2.2.2 Numerical model 

The discretization of the governing equations is done in the same way as for the 
homogeneous model. The discrete forms of the equations are therefore [91]: 
the equations of conservation of mass of each phase: 

 ( )ipipV
r dV r U n A 0

t α α α α α

⎛ ⎞∂ ⎜ ⎟⋅ ρ + ⋅ ρ ⋅ • ⋅ =
⎜ ⎟∂ ⎝ ⎠

∑∫  (84) 

 ( )ipipV
r dV r U n A 0

t β β β β β

⎛ ⎞∂ ⎜ ⎟⋅ ρ + ⋅ ρ ⋅ • ⋅ =
⎜ ⎟∂ ⎝ ⎠

∑∫  (85) 

the momentum equations for phase α: 
 in x direction: 

 

( )ip ip ip

x x

x ip
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⎜ ⎟∂ ⎝ ⎠
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⋅ + ⋅
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∑  (86) 
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 in y direction: 
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 in z direction: 
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where 
ip

mα  is the discrete mass flow of phase α through a face of the finite volume, 

obtained from the previous iteration as: 

 ( )ip ip
m r U n Aα α α α= ⋅ρ ⋅ • ⋅  (89) 

The three momentum equations for phase β are analogous to the three momentum 
equations for phase α presented above. 

As the second order backward Euler scheme is used, the transient term on the 
momentum equations (86) to (88) is approximated as: 

 ( )

( ) ( ) }
i

i i i

V

2 0 0 0 00 00 00

V 1r U dV
t t 1

2 r U 1 r U r U

α α α

α α α α α α α α α

⎛ ⎞ ⎧∂ ⎪⎜ ⎟⋅ρ ⋅ ≈ ⋅ ⋅⎨⎜ ⎟∂ Δ θ ⋅ + θ⎪⎩⎝ ⎠

⎡ ⎤+ θ ⋅ θ ⋅ ⋅ρ ⋅ − + θ ⋅ ⋅ρ ⋅ + ⋅ρ ⋅⎢ ⎥⎣ ⎦

∫
 (90) 

where θ is the quotient between the old and the new time step, as already defined in 
equation (36). The values of the variables and of the derivatives at the integration points 
are obtained according to what was previously stated for the homogeneous model. 
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2.2.3 Case study 

The case under study is the same one used for the homogeneous model: the filling of a 
space between two parallel plates with a resin, as represented in Fig. 4. However, now the 
no-slip condition on the walls is only applied to the equations referring to the resin phase, 
while the free-slip condition is applied to the equations referring to the air phase. 

Consequently, as the wall shear stress is zero for the air phase and, due to this, the 
velocity profile of the air at the outlet is expected to be flat, the theoretical pressure defined 
with these boundary conditions, Pinhom, is slightly different than the one defined with the 
boundary conditions used in the homogeneous model, Phom. 

For these boundary conditions: 

 ( ) 2
resin air

cs

6u U n dA U H W
5

⎛ ⎞⋅ρ ⋅ • = − ⋅ ⋅ ⋅ ⋅ ρ − ρ⎜ ⎟
⎝ ⎠∫∫  (91) 

and: 
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H H

⋅ ⋅ ⋅ ⋅ μ ⋅⋅μ ⋅
= τ = × ⋅ =∫∫ ∫  (92) 

Therefore, Pinhom(x) is given by: 
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 (93) 

 As in the analysis done for the homogeneous model, the gravity effect in pressure 
may be obtained from: 

 ( )
L

inhom
air

x
P grav x g dx= ρ − ρ ⋅∫( )( )  (94) 

and the pressure due to the viscous effect as: 
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 (95) 
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As mentioned before, CFX requires the definition of the parameters CD and dαβ to 
evaluate Mαβ. But, because of the fact already stated, that what matters is their quotient 
(CD/dαβ) and not their individual values, dαβ was kept constant with the default CFX value 
(1×10-3 m), and CD was varied between 0.05 and 500. 

The simulations were performed with mesh2 (48 by 5 elements) used for the 
homogeneous model. The time step is 2×10-4 s, the residuals convergence target which 
shall be achieved by all equations, except the volume fraction equations, is 10-5, up to a 
maximum of 50 iterations within each time step. CFX automatically sets the convergence 
criterion for the volume fraction equations, as these are usually more difficult to converge, 
to 10 times the specified convergence target [83, 92, 93]. 

The positions of the resin-air interface, for t = 0.35 s, obtained with CD set to 0.05, 
0.5, 5 and 50, are represented in Fig. 11a-11d. 
 The results obtained with CD set to 0.05, 0.5 and 5 are very similar. Unlike in the 
homogeneous model simulations, now the interface touches the walls and, clearly upstream 
of the interface there is resin and downstream of it there is air. Considering the interface 
position the location where the volume fraction is 0.5, it is in very good agreement with its 
theoretical position. 
 Although, when CD is increased to 50, Fig. 11d, the behaviour becomes similar to 
that of the homogeneous model. The reason for this is that when Mαβ increases, the phases’ 
flow fields tend to equalize each other. Actually, the homogeneous model may be regarded 
as a special case of the inhomogeneous model for a very large value of Mαβ. 
 For these simulations, the comparison between the pressures obtained from 
simulation and the theoretical ones is shown in Fig. 12a-12d. As expected, because of the 
results shown in Fig. 11a-11d, the graphics of Fig. 12a-12c are similar and the results 
obtained from simulations nearly match the theoretical ones. As also expected, for 
CD = 50, Fig. 12d, the pressure values obtained from simulation become similar to those 
obtained with the homogeneous model. 
 The comparison between the derivative along x of (Pinhom(x)-Pinhom(grav)(x)) and 
(PCFX-PCFX(grav)) is shown in Fig. 13a-13d. On the first three graphics, the results from 
simulations match the theoretical values for the majority of the domain, except for the flow 
front region. However for the two smallest values of CD, the error on this region is greater 
than for CD = 5. For CD = 50, the graphic is again similar to the homogeneous model 
results. 
 In Table 2, the results and the errors relative to theoretical values, at the inlet, for 
each value of CD are presented. Comparing these results with the ones presented in 
Table 1, obtained with the homogeneous model, one concludes that, for CD equal to 0.05, 
0.5 and 5, the errors were considerably reduced. For the same mesh, mesh2, the whole  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 11: Position of the resin-air interface for t = 0.35 s, obtained using mesh2. Contour lines 
denote the resin volume fractions 0.9, 0.5 and 0.1. The vertical line represents the theoretical 

position of the flow front. (a) CD = 0.05; (b) CD = 0.5; (c) CD = 5; (d) CD = 50. 
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Fig. 12: Comparison between the pressures obtained from simulations, with mesh2, and 
theoretical values, for t = 0.35 s. (a) CD = 0.05; (b) CD = 0.5; (c) CD = 5; (d) CD = 50. 
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Fig. 13: Comparison between the derivative of (PCFX-PCFX(grav)), obtained with mesh2, and 
theoretical values, for t = 0.35 s.  (a) CD = 0.05; (b) CD = 0.5; (c) CD = 5; (d) CD = 50. 



Simulation of the filling process 

 38 

pressure error was cut down from 6.3 % to around 0.5 %, the error of the gravity 
contribution from 10.3 % to around 1.5 % and the error of the viscosity contribution from 
33.3 % to between 3.5 % and 4.1 %. For CD equal to 50 and 500 the errors become higher, 
for CD = 500 they are close to the ones obtained with the homogenous model. 

Table 2: Comparison between the theoretical pressures and the pressures obtained from 
the simulations, at x = 0 (inlet), at t = 0.35 s. The errors relative to the theoretical values 

are shown inside brackets. 

 Pinhom Pinhom(grav) Pinhom-Pinhom(grav) 
Theory 573.7 355.3 218.4 

    
 PCFX PCFX(grav) PCFX-PCFX(grav) 

570.2 360.7 209.5 
CD = 0.05 

(-0.6 %) (+1.5 %) (-4.1 %) 
571.1 360.3 210.8 

CD = 0.5 
(-0.4 %) (+1.4 %) (-3.5 %) 
570.6 361.0 209.5 

CD = 5 
(-0.5 %) (+1.6 %) (-4.1 %) 
555.4 368.7 186.8 

CD = 50 
(-3.2 %) (+3.8 %) (-14.5 %) 
537.4 376.1 161.4 

CD = 500 
(-6.3 %) (+5.9 %) (-26.1 %) 

The evolutions with time of the inlet pressure obtained from simulations 
(PCFX@Inlet) and of its theoretical value (Pinhom@Inlet) obtained from equation (93), are 
shown in Fig. 14a-14d. The error of the theoretical value according to the CFX 
inhomogeneous model, where the air hydrostatic pressure and the air viscous effects are 
neglected, relative to the full theoretical value (Pin) obtained by equation (55), defined as: 

 
inhom

in

in

P P Inleterror1
P

@−
=  (96) 

and the error of the inlet pressure obtained from simulation, relative to the inhomogeneous 
model theoretical value, defined as: 

 
inhom CFX

inhom
P Inlet P Inleterror2

P Inlet
@ @

@
−

=  (97) 

are also presented. 
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Fig. 14: Evolution with time of the inlet pressure obtained from simulation and of its theoretical value. 
 (a) CD = 0.05; (b) CD = 0.5; (c) CD = 5; (d) CD = 50. 
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 For CD = 0.05 and CD = 0.5, it is possible to observe that, although the pressure 
obtained from CFX follows the theoretical value, it oscillates around the theoretical value. 
The oscillations of the curve error2 are well visible in Fig. 14a-14b. 
 These time oscillations are very probably related to the spatial oscillations at the 
flow front region shown in Fig. 13a-13d. Indeed, lower values of CD show higher 
oscillations both on Fig. 13a-13d and on Fig. 14a-14d. 
 For CD = 5, the pressure obtained from CFX and the theoretical one are nearly 
superposed. For t = 0.032 s error2 becomes smaller than 5 %, and for t = 0.15 s smaller 
than 1 %. 
 In Fig. 14c the error of the inlet pressure obtained from CFX relative to the full 
theoretical model value: 

 
CFX

in

in

P P Inleterror3 error1 error2 error1 error2
P

−
= = + − ×

@  (98) 

is also shown. However, the curve relative to error2 is nearly the same as the one relative 
to error3, meaning that the error introduced by the inhomogeneous model may be regarded 
as irrelevant. 

For CD = 5, the oscillation of the curve error2 is not as evident as for CD = 0.05 or 
CD = 0.5, but it is still present. And, it is interesting to note that the period of this 
oscillation, T(error2), corresponds to the period at which the flow front crosses the mesh 
elements. 

 xT error2
U

( ) Δ
=  (99) 

where Δx represents the x direction length of the mesh elements. 
In Fig. 15, the computation time to complete 0.47 s of simulation, for the four 

different values of CD, is shown: 
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Fig. 15: Computation time for the simulations to complete 0.47 s. 
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For CD = 0.05, the necessary computing time is nearly 2.6 times longer than for 
CD = 5. This occurs because, due to the observed oscillations in pressure for the smallest 
values of CD, the number of iterations to achieve the convergence target within each time 
step is larger than for CD = 5. 
 From all these presented results, it becomes clear that the value of CD = 5, among 
the five analysed values, is the most suitable for this filling process. 

2.3 Conclusions 

The homogeneous multiphase flow model, which is the appropriate one to simulate free 
surface flows, would supposedly be the appropriate one to simulate filling processes, 
where the two phases are completely stratified and the interface is well defined. However, 
it was shown that it is unable to give acceptable results for the case under analysis, the 
filling of a thin space, which is the typical situation in any kind of injection moulding 
process.  

The problem was overcome with the implementation of the inhomogeneous model, 
together with the no-slip boundary condition for the resin phase and the free-slip condition 
for the air phase. As it was shown, the fact that the air shear stress on the walls is not taken 
into account causes an insignificant error, as the air is considerably less viscous than the 
RIM resins. 

Five simulations with five different values for the drag coefficient, CD, were 
performed, of which CD = 5 revealed to be the most suitable one. The error of the obtained 
inlet pressure with this value, for t = 0.35 s, is merely 0.5 % relatively to theory. 

Nevertheless, an important question remains unanswered: would this be also the 
most suitable drag coefficient value for different meshes (different elements size and 
different elements aspect ratio), different time steps, different thicknesses, different inlet 
velocities or different material properties? However a very large amount of work would be 
necessary to show how this “ideal” value varies with all these variables. 
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3   Simulation of the curing process     

3.1 The cure reaction 

The key issue of the RIM process is the chemical reaction between the two or more liquid 
components, causing the mixture to polymerize. This chemical reaction, the so called cure 
of the resin, is described by a Kamal-type equation [94]: 

 ( ) ( )nm
C 1 2

dC S k k C 1 C
dt

= = + ⋅ ⋅ −  (100) 

where k1 and k2 have an Arrhenius dependence on temperature, as follows: 

 ( )E1
R T

1 1k A e ⋅−
= ⋅  (101) 

 ( )E2
R T

2 2k A e ⋅−
= ⋅  (102) 

and where C is the degree of cure, T the absolute temperature, R the universal gas constant 
and A1, A2, E1, E2, m and n are model parameters. 

The cure reaction leads to an increase of the mixture viscosity, which is expressed 
by [5, 39]: 

 
E
R T

A B C
g

g

C
A e

C C

μ
⋅

+ ⋅⎛ ⎞
⎜ ⎟
⎝ ⎠

μ
⎛ ⎞

μ = ⋅ ⋅ ⎜ ⎟⎜ ⎟−⎝ ⎠
 (103) 

where Cg is the gel, or solidification, point of the mixture, and Aμ, Eμ, A and B are model 
parameters. Obviously, equation (103) is meaningless for C ∈ [Cg, 1]. 

The reaction is exothermic, and the heat rate released per unit volume is 
proportional to the rate of cure, and given by: 

 R t CQ Q S= ⋅  (104) 

where Qt is total volumetric amount of heat produced by the complete reaction. 
The degree and the rate of cure play, therefore, an important role in the whole RIM 

process, as exemplified in Fig. 16. Consequently, numerical errors involving the degree of 
cure will give rise to errors involving all the other variables, even if these are numerically 
obtained with accuracy. CFX is a code designed to deal mainly with fluid flow and heat 
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transfer, and does not have any implemented model of the cure reaction; the degree of cure 
has to be implemented as an additional variable. 

 

Fig. 16: Influence of the degree and rate of cure in the RIM process. 

3.2 Physical model 

As the molecular diffusion for the RIM materials is very low, ~ 10-11 m2/s [39], the cure is 
dominated by the reaction and convection terms: 

 C
r C

r C U r S
t

( ) ( )α α
α α α α

∂ ⋅ ρ ⋅
+ ∇ • ⋅ ρ ⋅ ⋅ = ⋅ ρ ⋅

∂
 (105) 

where SC is the rate of cure given by equation (100), and α refers to the liquid (resin) 
phase. 

3.3 Numerical models 

Equation (105) is integrated over each control volume, and discretely represented as: 

 
ip ip C

ipV
r C dV m C r S V

t α α α α α

⎛ ⎞∂ ⎜ ⎟⋅ ρ ⋅ + ⋅ = ⋅ ρ ⋅ ⋅
⎜ ⎟∂ ⎝ ⎠

∑∫  (106) 

where m αip is the discrete mass flow of phase α through a face of the finite volume, given 
by equation (89).  
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The transient term may be approximated by the first order Euler transient scheme 
as: 

 
0 0 0

V

r C r C
r C dV V

t t
α α α α

α α

⎛ ⎞ ⋅ ρ ⋅ − ⋅ ρ ⋅∂ ⎜ ⎟⋅ ρ ⋅ ≈ ⋅
⎜ ⎟∂ Δ⎝ ⎠
∫  (107) 

or by the second order Euler transient scheme as: 

 ( )

( ) ( ) }
V

2 0 0 0 00 00 00

V 1r C dV
t t 1

2 r C 1 r C r C

α α

α α α α α α
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⎡ ⎤+ θ ⋅ θ ⋅ ⋅ρ ⋅ − + θ ⋅ ⋅ρ ⋅ + ⋅ρ ⋅⎢ ⎥⎣ ⎦

∫
 (108) 

where θ is the quotient between the old and the new time step, defined by equation (36). 
The degree of cure, C, at the integration points is obtained by: 

 ( )ip upC C C R= + β ⋅ ∇ •  (109) 

where Cup is the value of the degree of cure at the upwind node, C∇  is its gradient, R  is 
the vector from the upwind node to ip, and β is a blend factor. The high resolution scheme 
computes β locally to be as close as possible to 1 without violating boundedness principles 
[83]. The compressive differencing scheme allows β to be greater than 1, but reducing it as 
much as necessary to still maintain boundedness [85]. 
 In CFX a source term Sφ is linearised as: 

 ( )v p n 1S S Sφ φ φ −= + ⋅ φ − φ  (110) 

where Sφv is the source value and Sφp the linear source coefficient, both obtained from the 
previous iteration, and φn-1 the value of φ also from the previous iteration. As convergence 
is approached, (φ-φn-1) approaches zero and the value of Sφp becomes irrelevant and does 
not affect accuracy of the converged solution. However, it may improve convergence and 
stability. It should always be less or equal to zero and be set to the value [83]: 

 v
p

S
S φ

φ
∂

=
∂ φ

 (111) 

If this linearization coefficient is positive, even if the neighbour coefficients are 
positive, the centre point coefficient can become negative. Computationally, it is essential 
to keep Sφp negative so that instabilities and physically unrealistic solutions do not arise. 
Physically, a positive Sφp implies that, as φ increases, the source term increases, which, if a 
removal mechanism is not present, will lead to an increase of φ, and so on [95].  
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3.4 Case study 

The case under study is the one-dimensional (and isothermal) filling of a space initially 
filled with air, with “fictitious” water entering with an inlet velocity of 0.1 m/s. The 
densities of the water and air are 997 kg/m3 and 1.185 kg/m3, respectively. The rate of cure 
is chosen to be given simply by: 

 CS k 1 C( )= ⋅ −  (112) 

The geometry, mesh and boundary and initial conditions are shown in Fig. 17. 

 
Fig. 17: Geometry, mesh and boundary and initial conditions. 

To simulate the one-dimensional filling process, the top and bottom boundaries are set as 
free-slip walls. 

Equation (105) may also be written as: 

 
( )

C
d r C

r S
dt

α α
α α

⋅ρ ⋅
= ⋅ρ ⋅  (113) 

and taking into account  the mass conservation equation, equation (69), leads to: 

 
C

dC dt
S

=  (114) 

Integrating equation (114) between t = 0 and t = tR, tR representing the time of residence, 
with the condition C = 0 for t = 0, leads to: 

 ( )Rk tC 1 e − ⋅= −  (115) 

The time of residence is given, for the liquid phase, by: 

 R
xt
u

=  (116) 

and for the air phase, by: 
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 Rt t=  (117) 

 The value of k was chosen to be 0.921, so that when the flow front reaches the 
position x = 0.5 m, the value of C is 0.99. 

For t = 4 s, the value of C as function of x, obtained with equations (115), (116) and 
(117), is shown in Fig. 18. The vertical dashed line indicates the flow front position. 

 t = 4 s
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Fig. 18: Analytical value of C for t = 4 s. 

The simulations were performed with three different Courant numbers, which is 
expressed as: 

 u tCr
x

⋅ Δ
=

Δ
 (118) 

and with the combinations of the first order Euler transient scheme (TrSc1) or the second 
order Euler transient scheme (TrSc2) and the high resolution advection scheme (HR) or the 
compressive advection scheme (Comp), for the discretization of the cure equation. The 
definition of the compressive advection scheme for the cure equations has to be done by 
editing the CFX Command Language (CCL) file. 
 The residuals convergence target which shall be achieved by all equations is 10-5, 
up to a maximum of 50 iterations within each time step. 
 Initially there were problems in obtaining acceptable values of the degree of 
cure, C. After consulting the CFX technical services, it was found that the cause was an 
inconsistency in the discretization of the volume fraction multiplier in the source and the 
transient terms in the cure equation, in CFX-5.6. The problem was overcome with a custom 
solver provided by the CFX technical services. This problem has been fixed in the most 
recent versions of the code. 

The degree of cure, C, obtained from simulations is represented, for x between 
0.3 m and 0.5 m, in Fig. 19a-19c. 
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(a) 
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Fig. 19: Values of C, for x between 0.3 and 0.5, obtained from simulations. 
(a) Cr = 0.1; (b) Cr = 0.5; (c) Cr = 1.0. 
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 The error defined as: 

 
max

C CtheorError
Ctheor

−
=  (119) 

where C designates the values from numerical simulations, Ctheor the theoretical values 
obtained with equations (115), (116) and (117), and Ctheormax the maximum theoretical 
value of C at the instant t, is represented in Fig. 21a-21c. 
 From these figures, Fig. 21a-21c, one observes that: the compressive advection 
scheme creates artificial gradients on the values of C; for Cr = 0.1 the results obtained with 
the first and the second order transient schemes become analogous and; for all the three 
Courant numbers the best results are obtained with the combination of the second order 
Euler transient scheme with the high resolution advection scheme. 

With these discretization schemes, simulations were performed in another mesh, 
consisting of tetrahedral mesh elements instead of hexahedral elements, as shown in 
Fig. 20b. 

 
(a) 

 
(b) 

Fig. 20: Meshes used for simulations. 
(a) meshA, formed by hexahedral elements; (b) meshB, formed by tetrahedral elements. 

MeshA is the one used for the previous simulations, and meshB has exactly the same nodes 
as meshA, but it is formed by tetrahedral elements. 

Table 3: Characteristics of each mesh. 

 
Nr. of mesh 

nodes 
Nr. of mesh 

elements 
Type of 

mesh elements 

meshA 612 250 Hexahedral 

meshB 612 1250 Tetrahedral 
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Fig. 21: Error of the values of C obtained from numerical simulations. 
 (a) Cr = 0.1; (b) Cr = 0.5; (c) Cr = 1.0. 
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 Errors obtained with both meshes and Cr = 0.5, are represented in Fig. 22. Despite 
the fact that the two meshes have exactly the same nodes, because the mesh elements are 
different, the integration points are not the same and therefore the results differ. The error 
from meshA, where the hexahedral elements are aligned with the velocity vectors, is lower 
than the error from meshB. 
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Fig. 22: Errors obtained from both meshes. 

3.5 Conclusions 

CFX does not have any implemented model to solve the cure equation, which may, 
although, be modelled as a transient convection-source equation for an additional variable 
representing the degree of cure, C. However, as it is not a standard equation, various 
discretization schemes were tested, and the combination of the second order Euler transient 
scheme with the high resolution advection scheme revealed to be the most accurate to 
approximate the values of C at the integration points. 
 It was also shown that the results obtained with a mesh made up of hexahedral 
elements aligned with the velocity vector, are considerably more accurate than those 
obtained with a mesh containing exactly the same nodes but formed by tetrahedral 
elements. 
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4   Simulation of the RIM filling and curing stages  

4.1 The energy equation 

As mentioned at the end of Section 1, the objective of this work is to simulate the RIM 
filling and curing stages using the CFX software package. The filling stage is characterized 
by the simultaneous motion, cure and energy equations, after which, when the injection of 
resin has stopped and the material velocities inside the mould fall to zero, the pure curing 
stage, characterized by only the cure and energy equations, takes place.  

Up to this point, only the motion and cure equations were focused, but in this 
section also the energy equation is taken into consideration. 

4.1.1 Physical model 

It has been shown in this work, that only the inhomogeneous model produces accurate 
results for the filling of thin spaces. Therefore it will be used to model the filling stage. 

The conservation of mass and momentum equations were already described by 
equations (69) to (76), in Section 2. The cure is described by equation (105), in Section 3. 
The energy equation for phase α (resin) may be obtained by applying the First Law of 
Thermodynamics to an infinitesimal control volume, leading to [92]: 

 
( ) ( )

( ) v E

r htot pr r htot U
t t

k T W S

α α α
α α α α α

α α α α

∂ ⋅ ρ ⋅ ∂
− ⋅ + ∇ • ⋅ ρ ⋅ ⋅ =

∂ ∂

∇ • ⋅ ∇ + +

 (120) 

where kα represents the resin thermal conductivity, Wvα the viscous work, SEα heat 
sources, and htotα the total enthalpy defined as: 

 phtot h 0 5 U U u 0 5 U U. .α α α α α α α
α

= + ⋅ • = + + ⋅ •
ρ

 (121) 

and uα is the internal energy. 
As for multiphase situations, which is the case, CFX-5.6 does not model the 

viscous and pressure work neither the kinetic energy effects, the full energy equation 
becomes simply the thermal energy equation [83]: 
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( ) ( ) ( ) E
r h

r h U k T S
t

α α α
α α α α α α α

∂ ⋅ρ ⋅
+ ∇ • ⋅ρ ⋅ ⋅ = ∇ • ⋅∇ +

∂
 (122) 

For incompressible fluids, the enthalpy is expressed solely in terms of temperature [92]: 

 ( )ref refh h c T Tα α α= + ⋅ −  (123) 

where cα is the specific heat, and ref indicates a reference state for enthalpy evaluation (the 
default reference state in CFX is: href = 0 J/kg for Tref = 0 K [83, 92]). No distinction is 
made between Cpα and Cvα, as for incompressible fluids: 

 Cp Cv cα α α= =  (124) 

 The heat source, SEα, is given by: 

 E R t CS r Q r Q Sα α α= ⋅ = ⋅ ⋅  (125) 

An energy equation for phase β (air), similar to equation (122) but without a heat 
source term, could also be modelled, what would allow the implementation of a symmetric 
extra term in each energy equation, the interphase heat transfer, representing the heat 
transfer between the phases at their interface. However, mainly because, except for the first 
instants, the interface area is significantly small compared to the contact area between the 
resin and the walls, but also because the air thermal conductivity is typically smaller than 
that of RIM resins, the heat transfer between the resin and the air will be insignificant 
compared to the heat transfer between the resin and the walls, and consequently the 
interphase heat transfer term can be omitted on the energy equation of the resin without a 
foreseen loss of accuracy. Due to this, and as the air temperature is not an important issue, 
there is no need to model an energy equation for the air.  

In the most recent versions of CFX, CFX-5.7 and ANSYS CFX 10.0, it is already 
possible to use the full energy equation for multiphase flows [92, 93]. Although, as 
previously mentioned, for typical RIM situations the viscous work can be neglected [39, 
80], and the kinetic energy effects are only important for high speed flows. Therefore 
equation (122) is perfectly valid to model the energy balance in RIM. 

4.1.2 Numerical model 

As all the other equations, the energy equation for phase α is integrated over each control 
volume. It is then discretely represented as [83, 96]: 



  Simulation of the RIM filling and curing stages 

 55

 
ip ip

ipV

x y z R
ip ip

r h dV m h
t

T T Tk n n n A r Q V
x y z

α α α α α

α α

⎛ ⎞∂ ⎜ ⎟⋅ρ ⋅ + ⋅ =
⎜ ⎟∂ ⎝ ⎠

⎡ ⎤⎛ ⎞∂ ∂ ∂
⋅ ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

∑∫

∑
 (126) 

The transient term, as in all the equations except the volume fraction equations, is 
approximated by the second order Euler transient scheme as: 

 ( )

( ) ( ) }
V

2 0 0 0 00 00 00

V 1r h dV
t t 1

2 r h 1 r h r h

α α α

α α α α α α α α α
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⎡ ⎤+ θ ⋅ θ ⋅ ⋅ρ ⋅ − + θ ⋅ ⋅ρ ⋅ + ⋅ρ ⋅⎢ ⎥⎣ ⎦

∫
 (127) 

where θ, the quotient between the old and the new time steps, is obtained from equation 
(36). 
 On the advection term, the discrete mass flow of phase α, m αip, is obtained from 
equation (89), and hαip, from equation (39), being the blend factor β computed according to 
the high resolution advection scheme. On the diffusion term, the temperature derivatives at 
the integration points are evaluated making use of shape functions as indicated in 
equation (38). 

4.2 Case study 1 

4.2.1 Case description 

The work presented in [39], as already mentioned in Section 1.2, has been considered by 
many authors as a benchmark solution. It is used also in this work, in this section (Case 
study 1) and in Section 4.3 (Case study 2), as a benchmark solution to validate the results 
produced by CFX when simulating the whole RIM model, consisting of the mass, 
momentum, volume fractions, cure and energy equations. 
 In this Case study 1, the experimental system 9/21/1 conducted by [39] is used. 
This system was also numerically modelled in [39, 72]. 
 The mould is a simple rectangularly shaped mould, placed vertically, with a full 
gate at the bottom, as shown in Fig. 23. Its dimensions, together with the filling conditions, 
are indicated in Table 4. 
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Fig. 23: Mould geometry. 

Table 4: Mould dimensions and filling conditions [39]. 

L Length 0.505 [m] 
W Width 0.101 [m] 
H Thickness 3.2×10-3 [m] 

Qin Inlet flow rate 3.35×10-5 [m3/s] 
Tin Inlet temperature 55.3 [ºC] 
Tw Walls temperature 82.0 [ºC] 

 The chemical system used was a RIM type polyurethane, whose density and 
thermal properties, assumed being constant, are specified in Table 5. 

Table 5: Density and thermal properties of the chemical system [39]. 

ρ Density 1000 [kg/m3] 
Cp Specific heat 1880 [J/(kg⋅K)] 
k Thermal conductivity 0.17 [W/(m⋅K)] 

 A second order cure kinetics is assumed to describe the chemical reaction. The 
kinetic parameters are indicated in Table 6. 

Table 6: Kinetic parameters of the chemical system [39]. 

ko Pre-exponential factor in cure equation 36×103 [m3/(mol⋅s)] 
E Reaction activation energy 57.8×103 [J/mol] 

COHo Initial concentration of reactive species 2.6×103 [mol/m3] 
HR Heat of reaction 83×103 [J/mol] 
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Therefore, for this resin the rate of cure, SC, is given by: 

 ( ) ( )
E

R T 2
C o OHo

dC S k C e 1 C
dt

⋅−
= = ⋅ ⋅ ⋅ −  (128) 

and the released heat rate per unit volume of resin, QR, by: 

 ( ) ( )
E

R T 22
R t C R OHo C R o OHoQ Q S H C S H k C e 1 C⋅−

= ⋅ = ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ −  (129) 

 The rheological parameters, necessary for the viscosity equation (103) are given in 
Table 7. 

Table 7: Rheological parameters of the chemical system [39]. 

Aμ Pre-exponential factor in viscosity equation 4.1×10-8 [kg/(m⋅s)] 
Eμ Viscosity activation energy 38.3×103 [J/mol] 
Cg Solidification (gel) point 0.85 [   ] 
A Constant in viscosity equation 4.0 [   ] 
B Constant in viscosity equation -2.0 [   ] 

 The filling time, tf, is the mould volume divided by the volumetric inlet flow rate: 

 f
in

H W Lt 4 87 s
Q

.⋅ ⋅
= =  (130) 

4.2.2 Numerical issues 

As the mould width is much larger than its thickness (W/H ≈ 32), the side walls effect may 
be neglected, and a two-dimensional simulation may be performed without important loss 
of accuracy. 

Due to symmetry, only half of the geometry was modelled. As convergence 
problems arise when the flow front gets close to the outlet boundary, the calculation 
domain length was extended to 0.52 m instead of the 0.505 m mould length. The problem 
was run with two different meshes, both with 208 elements on the longitudinal direction, 
each 2.5 mm long, by 5 elements on the transverse direction in Mesh 1, Fig. 24a, and 
10 elements in Mesh 2, Fig. 24b. 
 The inhomogeneous model is used, together with the walls no-slip boundary 
condition for the liquid (resin) phase equations and the free-slip condition for the air phase 
equations. 
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(a) 

 
(b) 

Fig. 24: Detail of the meshes used to model the process. (a) Mesh 1: five mesh elements on the 
transverse direction; (b) Mesh 2: ten mesh elements on the transverse direction. 

At the inlet a parabolic velocity profile is imposed, with an average velocity of: 

 in
in

QU 0 1037 m s
H W

. /= ≈
⋅

 (131) 

resulting in a Reynolds number of 13, according to equations (40) and (41) and based on 
the resin viscosity at the inlet temperature and zero conversion, 5.05×10-2 kg/(m⋅s). At the 
outlet, the boundary condition is zero pressure. 
 The reference density is that of the air, 1.185 kg/m3. The resin volume fraction is 1 
at the inlet and zero at the outlet. It is assumed that the mixture has not reacted before it 
enters the mould, and therefore the condition of zero degree of cure is imposed at the inlet.  

For the energy equation, the boundary conditions are the temperatures indicated in 
Table 4. In CFX, the energy flow by diffusion at an inlet boundary is assumed to be 
negligible when compared to advection, and equated to zero [83]. 

The imposed initial conditions all over the domain are fluids at rest, pressure equal 
to zero, temperature equal to Tin and, due to the mould being initially filled with air, the 
initial resin and air volume fractions are 0 and 1, respectively. 

At the end of the filling stage the inlet velocity is reduced to zero in a time interval 
of 0.01 s, corresponding only to 0.2% of the filling time, via a third-order polynomial as 
represented in Fig. 25. This is more realistic than a sharp step or a ramp function, and 
guarantees the temporal continuity of the term ∂u/∂t in the momentum equations. A lower 
order polynomial would cause a discontinuity in this term, leading to a discontinuity of 
∂p/∂x and therefore a discontinuity of the inlet pressure which is physically unrealistic.  
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Fig. 25: Inlet velocity reduced to zero, via a third-order polynomial, at the end of the filling stage. 

According to equations (110) and (111), the source term in the cure equation was 
linearised as: 

 ( )C Cv Cp n 1S S S C C −= + ⋅ −  (132) 

where the source value, SCv, was set to:  

 ( ) ( )
E

R T 2
Cv o OHoS k C e 1 C⋅−

= ⋅ ⋅ ⋅ −  (133) 

and the linear source coefficient, SCp, which is always negative, to: 

 ( ) ( )
E

R TCv
Cp o OHo

S
S 2 k C e 1 C

C
⋅−∂

= = − ⋅ ⋅ ⋅ ⋅ −
∂

 (134) 

The source term in the energy equation could also be linearised relatively to 
temperature in a similar way: 

 ( )E Ev Ep n 1S S S T T −= + ⋅ −  (135) 

where the source value, SEv, would be: 

 ( ) ( )
E

R T 22
Ev R o OHoS r H k C e 1 C⋅−

α= ⋅ ⋅ ⋅ ⋅ ⋅ −  (136) 

and the linear source coefficient, SEp: 

 ( ) ( )
E

R T 22Ev
Ep R o OHo2

S ES r H k C e 1 C
T R T

⋅−
α

∂
= = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −

∂ ⋅
 (137) 
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However, as the source coefficient, SEp, would always be positive, the source term was not 
linearised and only the source value, SEv, was used. 

The time step is 4×10-4 s, and the maximum number of iterations within each time 
step is 50. Three simulations were run with Mesh 1, with the residuals convergence target 
set to 10-3, 10-4 and 10-5. With Mesh 2 only one simulation was performed, with the 
residuals convergence target set to 10-5. Note that, as previously mentioned, the 
convergence criterion for the volume fraction equations is automatically set by CFX to 10 
times the specified convergence target. 
 All the governing equations kept being solved up to t = 4.95 s, and after this instant 
the fluids are assumed to be completely at rest and only the energy and the cure equations 
are solved. Note that when the velocity at the inlet boundary is zero, the energy flows by 
diffusion and by advection are equated to zero, corresponding consequently to an adiabatic 
boundary. 

The computation times, in hours, to perform the four simulations are shown in 
Fig. 26. The steep lines correspond to the filling stage when all the equations are solved, 
while the low slope lines correspond to the curing stage when only the cure and the energy 
equations are solved and the convergence target is achieved in only one or two iterations 
within each time step. 
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Fig. 26: Computation time versus simulation time. 
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4.2.3 Results 

All the presented results, in this and in the next case studies, were obtained with 
conservative variable values, which are, actually, the results produced by the CFX-Solver. 
That is, a variable value on a boundary node is not precisely equal to the specified 
boundary condition (the boundary conditions are imposed on the integration points laying 
on the boundary), and instead it represents the average variable value in the control volume 
surrounding that node [83], Fig. 27. This seems to be more correct than using hybrid 
variable values, obtained by taking the results produced by the CFX-Solver and 
over-writing them on the boundary nodes with the specified boundary conditions [83]. 

 
Fig. 27: Two-dimensional representation of a boundary control volume. 

 All the results, except when the contrary is mentioned, were obtained with Mesh 1 
and with the residuals convergence target set to 10-5. 
  In Fig. 28a-28e the degree of cure, and in Fig. 29a-29e the temperature, are 
represented at five different instants: at t = 3 s (during the filling stage), at t = 4.87 s (the 
end of the filling stage), at t = 6.8 s (when the maximum temperature is observed), at 
t = 9 s and at t = 15 s. 
 Note that because of the length of the mould being much bigger than its thickness, 
the longitudinal and transverse directions are represented at different scales in order to be 
possible to properly visualize the results. 

At the end of the filling stage, the maximum value of the degree of cure is 0.79, 
which is close to the degree of cure at which the resin solidifies (gel or solidification 
point), Cg = 0.85, and the highest temperature is 151.6 ºC. At t = 6.8 s, the maximum 
temperature during the whole process, 177.9 ºC, is achieved, and the resin which ended up 
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Fig. 28: Degree of cure. (a) t = 3 s; (b) t = 4.87 s, when the filling stage ends; 
(c) t = 6.8 s; (d) t = 9 s; (e) t = 15 s. (Figure not to scale). 
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Fig. 29: Temperature [ºC]. (a) t = 3 s; (b) t = 4.87 s, when the filling stage ends; (c) t = 6.8 s, when the 
maximum temperature (177.9 ºC) is observed; (d) t = 9 s; (e) t = 15 s. (Figure not to scale). 
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at the forward centre part of the mould (about 42 %) has already solidified. At t = 9 s and 
at t = 15 s, the temperature contour lines are nearly parallel to the mould walls, indicating 
that at these instants the most important energetic process is heat conduction from the 
mould centre to the walls. About 81 % of the resin has already solidified at t = 9 s, and 
93 % at t = 15 s, remaining just a thin layer next to the mould walls yet to solidify. 

In Fig. 29b, the use of conservative temperature values is well visible. The resin 
temperature next to the wall near to the flow front, ~140 ºC, is quite above the wall 
temperature, 82 ºC. This is due to the fountain flow: at the flow front the fluid on the centre 
part of the mould at high temperature moves towards the walls. This behaviour is 
mentioned in [2] as “thermal shock”, and it also happens at the beginning of the filling 
stage when the resin temperature is lower than the mould walls temperature. It is 
characteristic of various injection moulding processes, and results in high fluid temperature 
gradients next to the mould walls. 
 The minimum value of the degree of cure at each instant is presented in Fig. 30. It 
corresponds, for t below 8.1 s to the degree of cure at the centre position of the inlet 
(x, y = 0, 0 [mm]), and for t above 8.1 s to the degree of cure at the location of the inlet in 
contact with the mould walls (x, y = 0, 1.6 [mm]). This can also be observed in 
Fig. 28b-28d (t = 6.8 s, t = 9 s and t = 15 s), and it occurs because the temperature at the 
mould walls is always 82 ºC and therefore the cure reaction is isothermal, while at the inlet 
centre the cure reaction is nearly adiabatic and the temperature is 55.3 ºC during the filling 
stage but increasing during the curing stage up to 167 ºC at t = 9.7 s. 
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Fig. 30: Minimum value of the degree of cure along the time. 

According to the simulation, the totality of the resin has solidified 22.8 s after the 
injection of resin has started. 
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In Fig. 31, the degree of cure at those points is compared with the degree of cure 
obtained by an adiabatic cure reaction with an initial temperature equal to Tin, 55.3 ºC, and 
by an isothermal cure reaction at a temperature equal to Tw, 82 ºC. 
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Fig. 31: Comparison of the degree of cure at (x, y) = (0, 0) [mm] and at (x, y) = (0, 1.6) [mm] with the 

degree of cure obtained by an adiabatic cure reaction and by an isothermal cure reaction. 

 The curve for the isothermal cure reaction is obtained by integrating equation 
(128) for a constant temperature, with the initial condition C = 0 for t = tf, which leads to: 

 
( ) ( )

E
R T

o OHo f

1C 1
1 k C e t t⋅−

= −
+ ⋅ ⋅ ⋅ −

 (138) 

where T is equal to 355.15 K (82 ºC), and tf is the filling time, 4.87 s. 
The curve corresponding to the adiabatic cure reaction is obtained by integrating 

the energy equation (122) without the convection and diffusion terms, with the initial 
condition T = Ti for C = 0, where Ti is the initial temperature, which gives: 

 r OHoH C
T C Ti

Cp
⋅

= ⋅ +
ρ ⋅

 (139) 

The above expression for T is introduced in equation (128), leading to: 

 ( )
( ){ }H Cr OHo

CpE R Ti C2
o OHo

C K C 1 C e
t

⋅
ρ⋅

⎡ ⎤− ⋅ + ⋅⎢ ⎥⎣ ⎦∂
= ⋅ ⋅ − ⋅

∂
 (140) 

and this last equation is numerically integrated, also with the initial condition C = 0 for 
t = tf. Ti is equal to Tin, 328.45 K (55.3 ºC).  
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 The term Hr⋅COHo/ρ⋅Cp in equation (139) is known as the adiabatic temperature 
rise, ΔTad [5, 39], as it corresponds to the temperature rise due to a complete adiabatic cure 
reaction. For this particular resin, ΔTad = 114.8 ºC. 
 It is very interesting to notice that for an initial temperature of 55.3 ºC, a complete 
adiabatic cure reaction would lead to a resin temperature of 170.1 ºC (55.3 ºC + 114.8 ºC), 
which is below the maximum temperature observed during the whole process, 177.9 ºC. 
This means that, although the walls temperature is significantly below these values, the 
part of the resin which reached that temperature had to have a positive energy transfer 
balance with its surroundings along its path. This may be explained partially by the walls 
temperature being above the resin inlet temperature, and partially by the resin distribution 
due to the fountain flow effect, as may be seen in Fig. 29b, where there is a gradient of 
temperature from “older” resin, located between the centre and the wall, to “younger” 
resin, located at the mould centre.  
 This clearly demonstrates that the adiabatic temperature rise cannot be taken as an 
upper limit for estimating the maximum temperature observed during the RIM process, and 
it attests the importance of the accurate simulation of the fountain flow behaviour and the 
complexity of the simultaneous flow motion, cure reaction and heat transfer processes. 

From equations (138) and (140), one concludes that, for the adiabatic and for the 
isothermal cure reactions, the time to reach a given degree of cure is determined, besides 
the resin properties, by the filling time, tf, and by the initial temperature for the adiabatic 
cure, or by the constant temperature for the isothermal cure. 

For the resin under analysis, the time (t-tf) to reach the solidification point 
(C = Cg = 0.85) and the time to reach the degree of cure C = 0.9, for an isothermal cure 
reaction are represented in Fig. 32a as function of the temperature, and for an adiabatic 
cure reaction in Fig. 32b as function of the initial temperature. 
 The curves in Fig. 32a are obtained from:  

 
( ) ( )E

R T
f

o OHo

Ct t
1 C K C e ⋅−

− =
− ⋅ ⋅ ⋅

 (141) 

derived from equation (138), while the curves in Fig. 32b are obtained by solving 
numerically equation (140). 
 The part can be removed from the mould when the totality of the resin has reached, 
typically, the degree of cure C = 0.9 [97, 98], such that enough molecular weight or 
network structure has been built. Therefore the cycle time will be determined by the 
longest between the isothermal and the adiabatic cure reactions times to reach that degree 
of cure, which, for common RIM operation temperatures, is very likely to be the one 
corresponding to the isothermal reaction. That is, unless the mould walls temperature, Tw, 
is much higher than the inlet temperature, Tin, the last portion of resin to solidify and to 



  Simulation of the RIM filling and curing stages 

 67

reach the degree of cure such that the part may be removed, will be that in contact with the 
inlet and the mould walls.  
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Fig. 32: Time to reach the solidification (gel) point (C = Cg = 0.85) and to reach C = 0.9. 
(a) Isothermal cure reaction at temperature T; (b) Adiabatic cure reaction with initial temperature Ti. 

 For the conditions under analysis, the part may be removed from the mould 
approximately 35 s (4.87 s + 30.47 s) after the injection of resin has started. This time may 
be considerably reduced, as can be observed in Fig. 32a, by increasing Tw. However, 
increasing the mould walls temperature will cause higher temperatures at the part centre, 
which must not exceed the polymer degradation point. A temperature of 200 ºC is probably 
an upper limit for polyurethanes [5]. The maximum temperature during the process may 
only be predicted by numerical simulation. 

The viscosity at the end of the filling stage is shown in Fig. 33. As the viscosity is 
solely a function of the degree of cure and of the temperature, as expressed by equation 
(103), its distribution could be foreseen by analysis of Fig. 28b and Fig. 29b: the highest 
values of viscosity occur where the degree of cure is higher and the temperature lower. 
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Fig. 33: Viscosity [kg/(m⋅s)] at t = 4.87 s, when the filling stage ends. (Figure not to scale). 
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  This viscosity distribution causes the pressure distribution along the longitudinal 
direction and its gradient represented in Fig. 34. The highest absolute values of the 
pressure gradient correspond obviously to the position where the highest values of 
viscosity are located, dropping to zero after the flow front. 
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Fig. 34: Pressure distribution along the x direction, just before the end of the filling stage. 

The evolution of the inlet pressure with time obtained with CFX, together with the 
numerical and experimental results obtained by Castro and Macosko [39], and the pressure 
for the case of constant viscosity, are represented in Fig. 35.  
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Fig. 35: Evolution of the inlet pressure with time. 
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The pressure for the case of constant viscosity is given by: 

 
2

in in
in2

12 UP visc0 inlet t g U t
H

( ) @ ⋅ ⋅ μ
= ⋅ + ρ ⋅ ⋅ ⋅  (142) 

where μin indicates the initial mixture viscosity: 

 2
in C 0 T Tin 5 05 10 kg m s( ; ) . /( )−μ = μ = = ≈ × ⋅  (143) 

In Fig. 35, the results obtained with CFX are in good agreement with the 
experimental and numerical results obtained in [39].  

The evolution of the inlet pressure obtained with the three residuals target values is 
shown in Fig. 36. The results obtained with 10-5 and 10-4 are practically superposed, while 
the results obtained with 10-3 are somewhat different. The error of the inlet pressure 
obtained with the residuals target set to 10-4 relatively to that obtained with 10-5 is always 
below 1 %, and most of the time below 0.1 %, while the error of the inlet pressure obtained 
with 10-3 rises above 40 % near the end of the filling stage  
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Fig. 36: Inlet pressure obtained with the different residuals target values. 

The reason why for the first 3 seconds the inlet pressure follows a straight line, is 
that as the cure reaction takes place, the degree of cure increases, but due to the released 
heat also the temperature increases, leading to equilibrium in the viscosity equation. This 
behaviour can be seen in Fig. 37, where the degree of cure and the viscosity are 
represented for the case of adiabatic cure reaction with initial temperature equal to Tin, 
55.3 ºC. 
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Fig. 37: Viscosity and degree of cure along the time for an adiabatic cure reaction. 

 The viscosity along the time, for the case of adiabatic cure reaction, with various 
initial temperatures, is represented in Fig. 38. The curves were obtained from equation 
(103), together with equation (139) and the numerical integration of equation (140). 
 The initial viscosity is as lower as higher are the values of Ti. However, the time 
when a rapid increase of viscosity is observed is as shorter as higher are the values of Ti. 
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Fig. 38: Viscosity along the time for adiabatic cure reactions with various initial temperatures. 

 From Fig. 38, and for the mould under analysis, which is filled in 4.87 s, one may 
expect for an inlet temperature of 50 ºC, a nearly constant viscosity (μin = 
6.36×10-2 kg/(m⋅s)) during the filling stage, and hence a linear evolution of the inlet 
pressure along the time resulting in 8.8 KPa at the end of the filling stage, which is almost 
one third of the predicted inlet pressure for Tin = 55.3 ºC. 
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 From the numerical integration of equation (140) or from Fig. 32b one concludes 
that, for Ti = 50 ºC, the time t-tf for an adiabatic cure reaction to reach C = 0.9 is 6.45 s. 
From equation (141) or from Fig. 32a one concludes that the necessary temperature for an 
isothermal cure reaction to reach that degree of cure in approximately the same time is 
112 ºC (for T = 112 ºC, t-tf = 6.63 s). Therefore it is expected that, if the inlet and the 
mould walls temperatures were modified to 50 ºC and to 112 ºC, respectively, the time for 
the part may be removed would be reduced from 35 s to 11.1 s (4.47 s + 6.63 s)  

Fig. 39 shows the temperature on a line between the mould centre (y = 0) and the 
mould wall (y = H/2), at x = 0.53L, during the filling and curing stages. The grid represents 
the temperature evolution along the time at points spaced by 0.1×(H/2), and temperature 
profiles on the y-direction at every 0.5 s. 

 
Fig. 39: Temperatures during filling and curing, at x = 0.53L ≈ 0.268 m. The white line 

represents the instant when the filling stage ends (t = 4.87 s). 

Due to the fountain flow, the temperature at the flow front is nearly uniform, and 
therefore when it reaches x = 0.53L, at t = 2.58 s, the temperature is almost constant along 
the mould thickness. Between this instant and the end of the filling stage (represented by a 
white line in the figure), the lowest temperature is verified at the point located in the centre 
plane, where the velocity and hence the energy convection term have their highest values. 
The maximum temperature is verified at y = 0.7×(H/2). 
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The temperature profile at the end of the filling stage shows clearly the difficulty of 
capturing the temperature curvature with only five mesh elements on the thickness 
direction. 
 After the filling stage has ended and the convection terms turned into zero, the 
temperatures at the centre points rapidly increase, reaching the maximum approximately at 
t = 7 s. After that, the heat lost by conduction to the mould walls is higher than the heat 
released by the chemical reaction, and the temperatures start to decrease.   

Fig. 40 shows the comparison between the results obtained with CFX, numerical 
and experimental results obtained by Castro and Macosko [39], and numerical results 
obtained by Lo [72]. The temperatures obtained with CFX, with Mesh 1, are, for most of 
the time, slightly higher than all the other results, quite probably due to the five mesh 
elements in the mould thickness direction being unable to capture very accurately the 
temperature gradients on that direction, leading to underestimation of the heat conduction 
from the mould interior to the mould walls. This conclusion may be strengthened by the 
observed lower temperatures obtained with Mesh 2 (10 mesh elements on the thickness 
direction), which are closer to the numerical results obtained in [39]. However, as Mesh 2 
has twice the mesh elements and 11/6 times the mesh nodes than Mesh 1, the computation 
time is nearly the double, as could be observed in Fig. 26.  
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Fig. 40: Temperatures at x = 0.53L. Numerical results obtained with CFX, with Mesh 1 and 

Mesh 2, at the centre plane, at y/(H/2) = 0.6, 0.7 and 0.9. Numerical results obtained in [39] at 
the centre plane, at y/(H/2) = 0.6, 0.7 and 0.9. Experimental results obtained in [39] at  

y/(H/2) = 0.6. Numerical results obtained in [72] at y/(H/2) = 0.6. 
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 Nevertheless, from Fig. 40 one may conclude that there is a general good 
agreement between the results obtained with CFX, even those obtained with Mesh 1, and 
the other numerical results. When compared with the experimental results at y/(H/2) = 0.6, 
the results obtained with CFX seem to be as good as the other numerical results. 
 The comparison between the temperatures obtained with the three residuals target 
values is shown in Fig. 41. The temperatures obtained with 10-5 and 10-4 are nearly 
superposed, while the ones obtained with 10-3 are somewhat different.  
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Fig. 41: Temperatures at x = 0.53L, at the centre plane, at y/(H/2) = 0.6 and at 

y/(H/2) = 0.9, obtained with the three different residuals target values. 

4.3 Case study 2 

4.3.1 Case description and numerical issues 

This case is the experimental system 9/21/2 conducted and numerically modelled by [39]. 
The mould, as in Case 1, is a simple rectangularly shaped mould with a full gate at the 
bottom. Its dimensions according to Fig. 23, and filling conditions are indicated in Table 8. 

Table 8: Mould dimensions and filling conditions [39]. 

L Length 0.487 [m] 
W Width 0.101 [m] 
H Thickness 3.2×10-3 [m] 

Qin Inlet flow rate 2.75×10-5 [m3/s] 
Tin Inlet temperature 54.0 [ºC] 
Tw Walls temperature 70.0 [ºC] 
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 The resin is the same as in Case 1, whose properties were reported in Tables 5-7. 
The filling time, tf, is equal to: 

 f
in

H W Lt 5 72 s
Q

.⋅ ⋅
= =  (144) 

Because of the same reasons reported in Case 1, a two-dimensional simulation is 
performed and only the top half of the mould is modelled. The calculation mesh is Mesh 1 
used in Case 1, with 5 mesh elements on the transverse direction, represented in Fig. 24a. 

A parabolic velocity profile, with an average value of: 

 in
in

QU 0 0851 m s
H W

. /= ≈
⋅

 (145) 

is imposed at the inlet boundary. This results, according to equations (40) and (41), in a 
Reynolds number of 10, based on the resin viscosity at the inlet temperature and zero 
conversion, 5.34×10-2 kg/(m⋅s). 
 The major differences between this Case 2 and Case 1 are a lower inlet flow rate, 
leading to a longer filling time, and the 12 ºC lower walls temperature. 

At  t = tf = 5.72 s the inlet velocity is set to zero via a third-order polynomial, in a 
time interval of 0.01 s, as in the previous case, but all the equations keep being solved up 
to t = 5.85 s. After that the fluids are assumed to be at rest and only the energy and the cure 
equations are solved. 

All the other numerical issues, including time step, are the same as employed in 
Case 1. Furthermore, as in Case 1, three simulations were performed with the residuals 
convergence target set to 10-3, 10-4 and 10-5. 

The computation time to perform the simulation, for each of the residuals target 
value, is shown in Fig. 42, where the difference between when all the equations are solved 
and when only the cure and the energy are solved is clear, as in Fig. 26. 
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Fig. 42: Computation time versus simulation time. 
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4.3.2 Results 

All the following presented results were obtained with the residuals convergence target set 
to 10−5, except when the contrary is mentioned. 

The degree of cure, in Fig. 43a-43e, and the temperature in Fig. 44a-44e, are 
represented at five different instants: at t = 4 s (during the filling stage), at t = 5.72 s (at the 
end of the filling stage), at t = 7.6 s (when the maximum temperature is observed), at 
t = 10 s and at t = 15 s. The longitudinal and transverse directions are represented at 
different scales in order to allow a proper visualization of the results. 
 According to the results obtained from the simulation, at the end of the filling stage 
a small portion (~1 %) of the resin has already solidified (the degree of cure is above 0.85), 
Fig. 43b. This simulation was only possible to perform by setting the maximum resin 
viscosity to 103 kg/(m⋅s). At this instant, the highest value of temperature is 159.3 ºC. At 
t = 7.6 s, the maximum temperature, 179.0 ºC, is observed, and 29 % of the resin has 
already solidified. At t = 10 s and t = 15 s, the temperature contour lines are nearly parallel 
to the mould walls, due to the heat conduction from the mould centre to the walls, and 
67 % and 84 %, respectively, of the resin has solidified. 
 It is curious to notice that, although the inlet and the mould walls temperatures are 
1.3 ºC and 12 ºC, respectively, lower than in Case 1, the maximum observed temperature is 
1.1 ºC higher. This is probably due to the higher degree of cure and temperature achieved 
at the end of the filling stage. As in Case 1, but now the difference being bigger, the 
maximum temperature, 179 ºC, is above the temperature caused by a complete adiabatic 
cure reaction, 168.8 ºC (54.0 ºC + 114.8 ºC). 
 The inlet pressure along the time obtained with CFX is represented in Fig. 45, and 
shows a good agreement with the experimental and numerical results obtained in [39] also 
shown in Fig. 45. 
 In Fig. 45, the dashed line indicated by Lengthening Reactor represents numerical 
results obtained in [39] neglecting the fountain flow effect, while the other dashed line 
represents results obtained in [39] with a fountain flow model. As CFX solves the full 
three-dimensional equations there is no need for any fountain flow model, but it is 
important to recognize that CFX is capable to model its effect even when the mesh 
elements longitudinal dimensions are considerably larger than their transverse dimensions 
as shown in Fig. 24a. 
 Fig. 46 shows the inlet pressure obtained with the three residuals target values. As 
in previous comparisons, the results obtained with 10-5 and 10-4 are practically superposed, 
while the results obtained with 10-3 are different. But in this case the simulation performed 
with 10-3, after the premature nearly asymptotic increase of pressure, diverged.  
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Fig. 43: Degree of cure. (a) t = 4 s; (b) t = 5.72 s, when the filling stage ends; 
(c) t = 7.6 s; (d) t = 10 s; (e) t = 15 s. (Figure not to scale). 
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Fig. 44: Temperature [ºC]. (a) t = 4 s; (b) t = 5.72 s, when the filling stage ends; (c) t = 7.6 s, when the 
maximum temperature (179.0 ºC) is observed; (d) t = 10 s; (e) t = 15 s. (Figure not to scale).  
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Fig. 45: Inlet pressure along the time. 
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Fig. 46: Inlet pressure obtained with the different residuals target values. 

 From these comparisons between the results obtained with the three different 
values of the residuals target, one observes that the results obtained with 10-4 are nearly the 
same as those obtained with 10-5 but the computation time is more than 40 % lower. 
Therefore it seems completely reasonable to accept the value 10-4 as good compromise 
between accuracy and computation time. 
 Fig. 47 and Fig. 48 show, respectively, the predicted degree of cure and 
temperature at the end of the filling stage versus the vertical position y* = y/(H/2) for some 
longitudinal positions x* = x/L, obtained with CFX and obtained in [39].  
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Fig. 47: Degree of cure, C, at the end of the filling stage. x* = x/L, y* = y/(H/2). 

 Solid lines: results obtained with CFX. Dashed lines: numerical results obtained in [39]. 
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Fig. 48: Temperature [ºC] at the end of the filling stage. x* = x/L, y* = y/(H/2).  

Solid lines: results obtained with CFX. Dashed lines: numerical results obtained in [39].  

 The results obtained with CFX are once again in good agreement with the results 
obtained in [39].  



Simulation of the RIM filling and curing stages 

 80 

4.4 Case studies 3 and 4 

4.4.1 Cases description 

In both previous cases, because of the moulds large ratio width/thickness, two-dimensional 
simulations could be performed without significant loss of accuracy. 
 Now, in the next two cases, geometries where all the three dimensions effects are 
important and where the flow front splits and remerges during the filling stage, were 
selected with the purpose of testing the ability of the software to model such situations. 
The geometry used for Case 3, represented in Fig. 49, is the same used in [99] to model the 
isothermal mould filling with a high viscous polymer melt. The geometry used for Case 4, 
represented in Fig. 50, is just a slight modification, the rectangular hole was substituted by 
a circular one. 
 The resin used in these two cases is again the same RIM type polyurethane used in 
[39] and in both previous cases, whose properties were described in Tables 5-7. The inlet 
and walls temperatures are the same as in Case 1, 55.3 ºC and 82 º C, respectively.  
 The filling time, tf, was chosen to be the same as in [99], 2 s, corresponding to the 
inlet flow rates, Qin, and inlet velocities, Uin, indicated in Table 9. 

 

Fig. 49: Mould geometry, and dimensions in millimetres, used for Case 3. 
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Fig. 50: Mould geometry, and dimensions in millimetres, used for Case 4. 

Table 9: Filling conditions for Case 3 and Case 4. 

  Case 3 Case 4 
 V Mould volume 2.960×10-5 m3 2.869×10-5 m3 
tf Filling time 2 s 2 s 

Qin = V / tf Inlet flow rate 1.480×10-5 m3/s 1.434×10-5  m3/s 
Uin = Qin / Ain Inlet velocity 0.370 m/s 0.359 m/s 

Tin Inlet temperature 55.3 ºC 55.3 ºC 
Tw Mould temperature 82.0 ºC 82.0 ºC 

  

4.4.2 Numerical issues 

Due to symmetry of the geometries and boundary conditions, only one fourth of the 
geometries were modelled. 
 As previously mentioned, convergence difficulties arise when the flow front 
approximates the outlet boundary. For this reason the calculation domain length was 
extended from 0.18 m (mould length) to 0.19 m. The calculation meshes used to model 
these cases are shown in Fig. 51 and Fig. 52. As in the previous cases, the mould half 
thickness is divided into 5 elements, resulting in 6320 elements and 8190 nodes in Case 3, 
and 6400 elements and 8304 nodes in Case 4. The extra 0.01 m length corresponds to four 
rows of mesh elements, which has been shown to be enough to overcome the convergence 
problems when the resin flow front comes close to the outlet boundary. 
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Fig. 51: Mesh for Case 3 (6320 elements and 8190 nodes). 

 

Fig. 52: Mesh for Case 4 (6400 elements and 8304 nodes). 

 The highest values of the Reynolds number are verified at the mould entrance zone, 
where the cross section area is smaller and consequently the velocity is higher, which for 
both cases, and based on the resin viscosity at the inlet temperature and zero conversion, 
have approximately the value of 26. 
 As in both previous cases, the inlet velocity is set to zero at the end of the filling 
stage via a third-order polynomial, as it was represented in Fig. 25. All the equations keep 
being solved until t = 2.05 s, and after that the fluids are assumed to be at rest and only the 
energy and cure equations are solved. 
 In these two cases the residuals convergence target was set to 10-4, since in the 
previous cases it was shown to produce identical results to 10-5 and reducing considerably 
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the computation time, which becomes more and more important as the number of mesh 
elements and nodes increase. 
 All the other numerical issues are the same employed in the previous cases. The 
only exception is the time step in Case 4 after 2.05 s (when only the cure and energy 
equations are solved), which was increased from 4×10-4 s to 4×10-3 s. This value is small 
enough to obtain convergence on this phase of the process simulation and allows reducing 
slightly the computation time, shown in Fig. 53. 
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Fig. 53: Computation time versus simulation time. 

4.4.3 Results 

Fig. 54a-54i and Fig. 55a-55i show, for Case 3 and Case 4, respectively, the obtained resin 
volume fraction distribution at the midplane (left side of the images) and at the mould wall 
(right side of the images) during the filling stage.  
 The flow front is well captured at the midplane at every instant. However, at the 
mould wall, when the flow front velocity is higher its definition becomes less accurate, 
Fig. 54a and Fig. 55a, and Fig. 54d-54e and Fig. 55d-55e next to the side wall. This 
behaviour is due to the value for the drag coefficient obtained in Section 2.2, CD = 5, used 
in the inhomogenous momentum equations, being inadequate for these conditions. This 
“ideal” value was obtained based on a mould thickness of 3.2 mm and an average velocity 
of 0.1 m/s, while in these two last cases the mould thickness is 2 mm and in the entrance 
zone the average velocity is around 0.36 m/s. This shows that the “ideal” value for CD is 
not constant, and it varies at least with the velocity. A lower value should be used, where 
and when the flow front velocity is higher, in order to decrease the coupling between the 
phases’ velocities and allow the air to leave the region to be occupied by the resin. 
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Fig. 54: Volume fraction of resin at the midplane (left side) and at the mould wall (right side), during 
the filling stage, for Case 3. The three contour lines indicate resin volume fractions of 0.1, 0.5 and 0.9. 

 (a) t = 0.1 s; (b) t = 0.2 s; (c) t = 0.35 s; (d) t = 0.45 s; (e) t = 0.55 s; (f) t = 0.8 s; 
 (g) t = 1.1s; (h) t = 1.4 s; (i) t = 2 s (end of the filling stage). 
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Fig. 55: Volume fraction of resin at the midplane (left side) and at the mould wall (right side), during 
the filling stage, for Case 4. The three contour lines indicate resin volume fractions of 0.1, 0.5 and 0.9. 

 (a) t = 0.1 s; (b) t = 0.2 s; (c) t = 0.35 s; (d) t = 0.45 s; (e) t = 0.55 s; (f) t = 0.8 s; 
 (g) t = 1.05s; (h) t = 1.4 s; (i) t = 2 s (end of the filling stage). 
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However, this observed wrong behaviour is not expected to have a significant 
influence on the solution. As may be seen in the figures, the regions where the resin 
volume fraction is below 0.9 are small compared to the mould size. 
 Fig. 56a-56c and Fig. 57a-57c for Case 3, and Fig. 58a-58c and Fig. 59a-59c for 
Case 4, show the degree of cure and the temperature at the midplane, at the bottom wall, at 
some longitudinal and transverse planes, at the side walls, and at the flow front (defined as 
the surface where the resin volume fraction is 0.5), obtained at three instants: at t = 1.05 s 
(when the flow front remerges), at t = 2 s (end of the filling stage) and at t = 4.2 s (when 
the maximum temperature is observed). To allow a better visualization of results, the 
thickness direction was scaled up 8 times relatively to the other directions. 
 In both cases, when the flow fronts remerge, at t = 1.05 s, the degree of cure of the 
streams meeting each other is around 0.05, Fig. 56a and Fig. 58a. If this value is above a 
critical value, typically 0.40 [5], the material will not interpenetrate and a knit line will be 
visible and weak. At this instant the highest values of the degree of cure are 0.22, Fig. 56a 
and Fig. 58a, and the highest temperatures are 84.9 ºC, Fig. 57a and Fig. 59a, just slightly 
above the walls temperature.  
 At the end of the filling stage, t = 2 s, the resin with higher degree of cure, Fig. 56b 
and Fig. 58b, and higher temperature, Fig. 57b and Fig. 59b, is located next to the walls, 
contrasting to the end of the of the filling stage in Case 1 (with the same inlet and wall 
temperatures, but a longer filling time) where, at the end of the filling stage, the resin with 
higher degree of cure and temperature was located between the mould centre and the walls, 
Fig. 28b and Fig. 29b. At this instant, the highest degrees of cure are 0.37, for both cases, 
and the highest temperatures 92.5 ºC and 92.7 ºC, for Case 3 and Case 4, respectively.
 At t = 4.2 s the situation has inverted, the resin at the mould centre has higher 
degree of cure, Fig. 56c and Fig. 58c, and its temperature is higher than at the walls,  
Fig. 57c and Fig. 59c. At this instant the maximum temperatures during the whole process, 
155.4 ºC, were observed in both cases. This temperature is 22.5 ºC below the maximum 
temperature observed in Case 1, despite the fact that the resin and the inlet and the walls 
temperatures are the same. This may be explained by the mould thickness being smaller, 
increasing the heat conduction from the resin to the walls, but also by the shorter filling 
time, and consequently lower temperatures at its end. At this instant the highest values of 
the degree of cure are 0.90 and 0.89, for Case 3 and Case 4, respectively, but only 3.0 % 
and 2.8 % of the resin has solidified, Fig. 56c and Fig. 58c. 
 At t = 5 s the percentage of resin that has solidified increases to 36 %, and at 
t = 10 s to 78 %. At t = 20.7 s the last portion of resin reaches the gel point, Cg = 0.85, and 
at t = 32 s the totality of the resin has reached the degree of cure of 0.9 and the parts may 
be safely removed from the moulds. 



  Simulation of the RIM filling and curing stages 

 87

(a) 

 

 

(b) 

 

 

(c) 

 

 

Fig. 56: Degree of cure for Case 3. (a) t = 1.05 s, when the flow front remerges; 
 (b) t = 2 s, at the end of the filling stage; (c) t = 4.2 s (the black curves indicate C = Cg). 

(The thickness direction is scaled up 8 times relatively to the other directions). 
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Fig. 57: Temperature [ºC] for Case 3. (a) t = 1.05 s, when the flow front remerges; 
 (b) t = 2 s, at the end of the filling stage;  (c) t = 4.2 s, when the maximum temperature is observed. 

(The thickness direction is scaled up 8 times relatively to the other directions). 
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Fig. 58: Degree of cure for Case 4. (a) t = 1.05 s, when the flow front remerges;  
(b) t = 2 s, at the end of the filling stage; (c) t = 4.2 s (the black curves indicate C = Cg). 

(The thickness direction is scaled up 8 times relatively to the other directions). 
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Fig. 59: Temperature [ºC] for Case 4. (a) t = 1.05 s, when the flow front remerges; 
(b) t = 2 s, at the end of the filling stage;  (c) t = 4.2 s, when the maximum temperature is observed. 

(The thickness direction is scaled up 8 times relatively to the other directions). 



  Simulation of the RIM filling and curing stages 

 91

From equation (141), according to the theoretical analysis previously presented in 
Section 4.2, these times would be 21.2 s and 32. 5 s. The differences occur because the last 
portions of resin to reach C = Cg = 0.85 and C = 0.9 are in contact with the inlet and the 
walls, and as CFX calculates the source terms based on the nodes values, which, for 
boundary nodes, as previously mentioned, are not precisely equal to the imposed boundary 
conditions but represent the average of the boundary control volume, the source term on 
the cure equation is calculated based in a temperature slightly above the imposed wall 
temperature. But the differences, being small (2.4 % and 1.5 %), shall not constitute a 
concern, because in practice it will be impossible to keep the mould walls temperature 
constant, and this fact will probably cause a higher source of error. 

The obtained inlet pressures, for both cases, are shown in Fig. 60. The initial steep 
parts of the curves, before approximately 0.1 s, correspond to when the flow front is at the 
entrance zone moving at a higher velocity. Due to the slightly lower inlet velocity, the inlet 
pressure in Case 3 before 0.65 s is a little lower than in Case 4, but after this instant, 
because of the smaller cross section around the circular hole, it becomes slightly higher.  
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Fig. 60: Inlet pressure along the time. 

4.5 Conclusions 

Ten partial differential equations are necessary to model the RIM simultaneous filling and 
curing processes. A small time step value and a large number of iterations within each time 
step are required to achieve convergence, leading to long computing times, even for 
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two-dimensional analyses and simple geometries with relatively small number of mesh 
elements. 
 Nevertheless, two cases were simulated and the results obtained with CFX were 
compared with available numerical and experimental results, showing a general good 
agreement with them, what demonstrates that it is possible to simulate the complex RIM 
simultaneous filling and curing processes using CFX, with a relatively good accuracy, even 
for situations unlikely to happen in reality, where the gel point is nearly reached in one 
case, and actually reached in the other, during the filling stage. 
 Simulations were performed with three different values for the residuals 
convergence target. The ones performed with 10-4 provided analogous results to the ones 
with 10-5, though requiring a computation time around 40 % shorter, allowing one to 
consider 10-4 as a fair reasonable compromise between accuracy and computation 
performance. 
 Two other cases, where all the three-dimensional effects are important and where 
the flow fronts splits and remerges, were simulated. The flow front was always well 
captured at the midplane, however, at the wall its definition becomes less accurate when its 
velocity is higher. This occurs because the drag coefficient value used (previously obtained 
based on other conditions) is too high for these conditions. 
 In order to try to reduce the computation time, these cases were run in parallel in 
two PCs, but the computation times were longer than when run in serial. It is mentioned in 
the CFX documentation [83, 92, 93] that, typically, a minimum of 30×103 nodes, for 
tetrahedral meshes, or 75×103, for hexahedral meshes, should be used per partition to see 
improvements in the computational performance. 
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5   Conclusions          

Synthetic polymeric materials are nowadays commonly used in all of the major market 
sectors. They are very attractive from an economical point of view, but also by their 
aptitude to be manufactured into complex parts and their relatively high weight specific 
strength and stiffness, 
 Synthetic polymers can be classified in two major categories: thermoplastics and 
thermosets. For thermoplastics, by far the largest volume, as the long molecules are not 
chemically joined, they can be melted, solidified and remelted again. Thermosets upon 
heating or mixing with appropriate reagents undergo an irreversible chemical reaction, 
causing the short chain molecules to bound, and leading to the formation of a rigid 
structure. 
 Amongst the various polymer processing techniques, injection moulding is one of 
the most important, representing about one third of all manufactured polymer parts. In 
TIM, the hot polymer is pushed at high pressure into a cold cavity where it undergoes 
solidification by cooling. Reactive moulding is quite different, it uses polymerization, 
instead of cooling, to form the solid part. 
 RIM is a process for rapid production of complex parts through the mixing and 
chemical reaction of two or more components. When injection begins, the liquid 
components, held in separated tanks, flow into a mixing chamber, the streams are 
intensively mixed, and the mixture begins to polymerize, or cure, as it flows into the mould 
cavity. 

The end use applications for RIM can, at present, be found in a large variety of 
forms, and although polyurethanes comprise the majority in RIM processing, there are also 
other types of chemical systems that can be processed. 
 Due to RIM liquids’ low viscosity, large parts can be produced with relatively 
small machines, complex shapes with multiple inserts can be fabricated, low pressures can 
be used to fill the moulds, and these may be constructed from light-weight materials often 
at lower costs than for TIM, and mould clamping forces are much lower requiring lower 
cost presses, opening up short runs applications and even prototype applications. Low 
viscosities also open options in the use of reinforcements. RIM’s temperatures are typically 
lower than those for TIM, with less energy demands. 
 However, handling of reactive, and often hazardous liquids, requires special 
equipments and procedures, and as some components freeze at room temperature, a 
temperature controlled environment is required, increasing the costs. Because of the low 
viscosity, moulds are difficult to seal, increasing flash, and low viscosity liquids penetrate 
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mould surfaces, requiring the use of release agents. Due to low pressure, it is difficult to 
remove air from behind inserts and from corners, rendering vent locations extremely 
important. If flow into the mould is too rapid, air may be entrained and large bubbles 
appear in the final part, but moulds filled too slowly may lead to short shots. 
 The first attempts to study the filling stage in injection moulding took place in the 
beginning of the 1950s with flow visualizations and tracer studies. 

Numerical simulations basically started in the early 1970s. The first developments 
were applied to the filling stage of simple tubular, circular and rectangular geometries, 
allowing the flow to be assumed as unidirectional. The temperature was considered as two-
dimensional, one coordinate in the flow direction and the other in the thickness direction, 
leading to the so-called 1½D approach, and finite difference techniques were used to solve 
the set of equations. 

The real breakthrough in injection moulding simulations came, in the beginning of 
the 1980s, with the development of a general 2½D approach, combining finite elements 
along the midsurface of the cavity with finite differences along the thickness direction. 
However, based on the Hele-Shaw approximation, this approach was not able to represent 
the complex flow kinematics of the flow front region, the fountain flow. The description of 
this phenomenon was addressed by means of experimental, analytical and numeric 
methods, leading to approximate models able to capture its kinematics without resolving 
its complex 3D details. 

To date, several commercial and research three-dimensional programs for injection 
moulding simulations have been developed. 

Early studies in RIM simulation were dedicated to the static analysis of heat 
transfer and cure, assuming that the curing stage could be decoupled from the filling stage. 
More realistic models were obtained by extending the 1½D approach to RIM. Extensions 
to the 2½D approach were only reported more recently, in the 1990s, and some 3D 
simulations have already been reported in some works. 
 Although many commercial codes are able to perform 3D injection moulding 
simulations, the 2½D Hele-Shaw approach is still the standard numerical framework for 
simulation of injection moulding. Because typically in injection moulding the part 
thickness is much smaller than its overall dimensions and the polymer viscosity is high 
(resulting in low Reynolds numbers), in the 2½D formulation the inertia effect, the velocity 
component and thermal convection in the thickness direction, and, the velocity gradients 
and the heat conduction in the flow directions, are neglected. Based on these 
approximations, the continuity and momentum equations are simplified and merged into a 
simple two-dimensional equation in terms of pressure and fluidity, and a simplified energy 
equation is obtained. Due to those assumptions and simplifications, the computation time 
can be considerably reduced relatively to full three-dimensional formulations. But although 
its successful applications, the 2½D formulation has its limitations: in some cases the 
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inertia and three-dimensional effects may become significant enough to influence the flow, 
for the RIM process, because of resins low viscosity, the inertia and gravity effects cannot 
be omitted, and due to the importance of the fountain flow in RIM, a three-dimensional 
formulation is expected to provide more accurate information than simple fountain flow 
approximations. 

A very simple case, the filling of a space between two parallel plates with a liquid 
with constant density and viscosity, was studied. Applying the Newton’s Second Law of 
motion, the theoretical values of the pressure, and the theoretical values of the pressure 
according to the CFX Homogenous Model, which omits the air hydrostatic pressure effect, 
were derived. The case was simulated, with four different meshes, using the CFX 
Homogeneous Model. This model, which assumes that both liquid and gaseous phases 
share the same velocity field, should be the appropriate for this type of process, as the two 
phases are completely stratified and the interface is well defined. In the simulations, the 
resin-air interface was well captured within two mesh elements, proving the efficiency of 
the advection and transient compressive discretization schemes. However, the interface is 
always ahead of its theoretical position, and, much more important, it does not touch the 
walls (there is always a layer of air between the resin and the walls) what obviously is not 
in accordance with reality. Moreover, reducing the mesh elements’ size, either on the 
longitudinal direction or on the transverse direction, does not contribute to improvement of 
this incorrect behaviour. Because of the resin volume fraction next to the walls being close 
to zero, the computed viscosity is much smaller than its actual value, leading to a wrong 
velocity profile and to an underestimation of the viscous effect contribution to pressure. 
This is of major importance, as the injection pressure is one of the key parameters to be 
predicted from numerical simulations, but also because, when solving the cure and the 
energy equations, errors on the advection terms may lead to completely wrong final results. 
The gravity and the viscous effects contribution to pressure, as well as the whole pressure, 
obtained from the simulations were compared with theoretical values. The error of the inlet 
pressure due to the viscous effect, obtained with the four different meshes, was comprised 
between 30 % and 35 %, showing only a tiny decrease with the increase of the number of 
mesh elements, which does not seem to be a solution for the problem. This behaviour has 
already been mentioned by some authors, the physically correct no-slip boundary condition 
applied to the air phase prevents the flow from touching the walls, and they claim that the 
no-slip condition should be imposed only on the filled portion of the mould. 
 As CFX does not allow the implementation of conditional boundary conditions, the 
only way to prescribe the no-slip boundary condition only on the filled portion of the 
mould, and the free-slip condition on the empty portion, is by employing the 
inhomogeneous model, which assumes that each phase has its own velocity field and they 
interact via interphase transfer terms. The no-slip condition was applied to the resin 
equations and the free-slip condition to the air equations. The interphase momentum 
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transfer term, which links the two sets of momentum equations, is function of the phases’ 
relative velocities, their density and volume fractions (it tends to zero as the volume 
fraction of one of the phases tends to zero, being meaningful only at the interface), and two 
parameters that must be defined by the user: a non-dimensional drag coefficient, CD, and 
an interface length scale, dαβ. However, as it was shown, the individual values of these 
parameters do not matter, but their quotient does. Therefore, the parameter dαβ was kept 
constant (with the CFX default value) and simulations were performed with different 
values of CD, from 0.05 to 500. 
 Contrasting with the simulations employing the homogenous model, in the 
simulations performed with CD set to 0.05, 0.5 and 5, the resin-air interface touches the 
walls and is in very good agreement with its theoretical position. But when CD increases to 
50, the behaviour becomes similar to that of the homogenous model, what is explained by 
the increase of the interphase momentum transfer term causing the phases’ flow fields to 
equalize. As it was done for the simulations employing the homogeneous model, the 
results obtained from the simulations employing the inhomogeneous model were compared 
with theoretical values. For CD equal to 0.05, 0.5 and 5, the errors were considerably 
reduced relatively to the ones obtained with the homogenous model (the error of the 
viscous contribution to pressure decreased from 33 % to 4 %). The evolution of the 
obtained inlet pressures with time was compared with theory and, despite following very 
closely the theoretical pressure, the pressures obtained with the three lowest values of CD 
exhibit oscillations with the same period at which the interface crosses the mesh elements. 
The amplitudes of these oscillations are bigger as smaller is the value of CD, and for 
CD = 5, although still present, the oscillations nearly vanish. The shortest computation time 
was obtained with CD equal to 5, what together with the presented results, allows one to 
conclude that, among the five different analyzed values, CD = 5 is the most suitable for the 
studied case. However, this leaves an unanswered question: would this value also be the 
most suitable one for other physical and/or numerical conditions? 

The cure of the resin can be modelled in CFX as a transient convection-source 
equation for an additional variable, the degree of cure. But, as this is not a standard 
equation in CFX, and as errors involving the degree of cure will give rise to errors 
involving the other variables, various schemes for the discretization of the transient and 
advection terms of the cure equation were tested. A one-dimensional filling case with a 
first order rate of cure (allowing one to obtain the analytical solution) was studied. 
Simulations were performed with combinations of the first or the second order Euler 
transient schemes and the high resolution or the compressive advection schemes. The 
results were compared with theory, showing that the most accurate ones were obtained 
with the combination of the second-order Euler transient scheme with the high resolution 
advection scheme.  
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 As CFX-5.6, for multiphase flows, does not model the viscous and pressure works 
neither the kinetic energy effects, the energy equation solved for the resin is simply the 
thermal energy equation. Although in the most recent versions of CFX it is possible to use 
the full energy equation for multiphase flows, because the viscous work is neglectable for 
typical RIM situations and because the kinetic energy effects are only important for high 
speed flows, the thermal energy equation is perfectly valid to model the energy balance in 
RIM. 
 Two case studies, experimentally conducted by [39], were used to validate the 
whole model in CFX, consisting of the mass, momentum, volume fraction, energy and cure 
equations. Both moulds are simple rectangularly shaped cavities and filled with a RIM type 
polyurethane. In both cases, as the mould width is considerably larger than the thickness, 
two-dimensional simulations were performed, and due to symmetry only half of the 
geometry was modelled. 
 Both cases were run on a mesh with 5 elements on the transverse direction, and one 
of them also on a mesh with 10 elements on the transverse direction. The inhomogeneous 
model was employed, together with the walls no-slip boundary condition for the resin 
equations and the free-slip condition for the air equations. All the governing equations kept 
being solved slightly longer (~ 2 %) than the filling time, and after that the fluids were 
assumed to be completely at rest and only the energy and the cure equations were solved. 
Because of the very small time step required to obtain convergence, the computation times 
were considerable. In both cases high degrees of cure were achieved at the end of the 
filling stage, resulting in a significant raise of viscosity and consequently the increase of 
the inlet pressure. The highest temperature observed during the whole process was, in both 
cases, above the temperature resulting from a complete adiabatic cure reaction, meaning 
that, although the walls temperature are significantly lower than those highest temperature 
values, the part of the resin that reached that temperature had to have o positive energy 
balance, along its path, with its surroundings. This clearly shows that the adiabatic 
temperature rise cannot be used directly as an upper limit for the maximum resin 
temperature during the RIM process, and attests the complexity of the simultaneous flow 
motion, cure reaction and heat transfer processes. Some results obtained from the 
simulations, such as the evolution of the inlet pressure and of temperatures with time, and 
the degree of cure and the temperature distributions at the end of the filling stage, were 
compared with available numerical and experimental results from [39] and numerical 
results from [72], showing a general good agreement with those. 

Two other cases, where all the three dimensions effects are important and where the 
flow front splits and remerges, were simulated. At the midplane the flow front was always 
well captured, but at the wall its definition becomes less accurate when its velocity is 
higher. The times, obtained from the simulations, for the resin to have completely 
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solidified and to have reached the degree of cure such that the parts may be removed from 
the mould, showed only a small difference relatively to the theoretical analysis presented. 
 It was demonstrated that CFX is capable to simulate the complexities of the RIM 
simultaneous three dimensional filling and curing processes with good accuracy. However, 
even for simple geometries and meshes with very few number of elements (in the context 
of what is nowadays common in CFD), due to the very small time steps necessary to obtain 
convergence, the computation times are considerably long. More complex geometries, 
because of details, will require finer meshes and very probably also smaller time steps, 
which will drive the computation times to some impractical values. Even taking cases 3 
and 4 as a reference, which took around 5 days of CPU time to complete 8 s of simulation, 
if the parts were slightly different and did not have the two planes of symmetry and the 
whole geometry had to be modelled, the computation time, making a rough extrapolation, 
would rise to 20 days. But, in order to increase accuracy, if one wanted to double, from 5 
to 10, the number of elements on the thickness direction (in the 2½D approach the 
thickness direction is typically divided in 8-20 layers [14]), keeping the same aspect ratio 
of the mesh elements, the computation time would jump to 160 days (20 days × 23). 
 In all the simulated cases, the moulds and the 2D geometries were filled upwards 
and they had a full outlet at the top, placed at least 4 mesh elements ahead of the final 
position of the flow front. In RIM, because of the resins low viscosities, the moulds are 
commonly filled upwards to facilitate the exit of the air and to avoid the formation of air 
pockets (in TIM, because of the polymers high viscosity, the gravity effect, and therefore 
the mould orientation, are irrelevant), but surely real moulds do not have full outlets. 
Instead, they contain vents, which shall be ideally located so that the totality of the air can 
leave the mould. But, because of their tiny dimensions, vents cannot be meshed. In fact 
they could, but that would require the mould to be meshed with elements with the same 
order of size as the vents, what would mean a completely unrealistic computation effort. 
However, and leaving a suggestion for future work, the parts of the mould walls containing 
vents may possibly be modelled as regions resistant to the advance of the resin but free to 
the passage of the air, that is, as subdomains with resistive source terms on the resin 
momentum equations. 
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