CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Forums > Software User Forums > OpenFOAM

A few simple questions about linearUpwind and limitedLinear

Register Blogs Community New Posts Updated Threads Search

Like Tree46Likes

Reply
 
LinkBack Thread Tools Search this Thread Display Modes
Old   September 28, 2011, 14:58
Default A few simple questions about linearUpwind and limitedLinear
  #1
Senior Member
 
Daniel P. Combest
Join Date: Mar 2009
Location: St. Louis, USA
Posts: 621
Rep Power: 0
chegdan will become famous soon enoughchegdan will become famous soon enough
I am a writing about the schemes that I used in my simulations in my thesis and could use some clarification on the linearUpwind and limitedLinear schemes. I have read http://www.cfd-online.com/Forums/ope...r-schemes.html and Alberto did a good explanation, but I need a little more clarification.

linearUpwind:

I know linearUpwind is second order and bounded by a limiter (e.g. cellMDLimited from http://www.cfd-online.com/Forums/ope...lllimited.html). This is different than the limiters used in limitedLinear. In Fluent documentation, the definition of second order upwind is given as:

\phi_f = \phi + \nabla\phi\cdot\vec{r}

where \phi_f and \phi are the face value of phi and the cell centered values of phi in the upstream cells respectively. I am reading through the code of linearUpwind and I see:

Code:
    GeometricField<Type, fvsPatchField, surfaceMesh>& sfCorr = tsfCorr();

    const surfaceScalarField& faceFlux = this->faceFlux_;

    const labelList& owner = mesh.owner();
    const labelList& neighbour = mesh.neighbour();

    const volVectorField& C = mesh.C();
    const surfaceVectorField& Cf = mesh.Cf();

    GeometricField
        <typename outerProduct<vector, Type>::type, fvPatchField, volMesh>
        gradVf = gradScheme_().grad(vf);

    forAll(faceFlux, facei)
    {
        if (faceFlux[facei] > 0)
        {
            label own = owner[facei];
            sfCorr[facei] = (Cf[facei] - C[own]) & gradVf[own];
        }
        else
        {
            label nei = neighbour[facei];
            sfCorr[facei] = (Cf[facei] - C[nei]) & gradVf[nei];
        }
    }
I see the mesh.C and mesh.Cf and I am led to believe that through quickly reading the code, these are the cell centroid and face centroid, thus producing an r vector that is dotted with the gradient between the owner and neighbor cells (&gradVf) controlled by gradSchemes. I then see some similar code to take care of the boundaries.

When is the sfCorr used to correct the value of the face? I guess I am just interested in generating a discussion and confirming or clarifying my thoughts.

limitedLinear
This again is second order and is bounded using a sweby limiter (http://www.cfd-online.com/Forums/ope...r-schemes.html post 16). I am just a little fuzzy on what the final simplified form of the equation is for limitedLinear (I admit I haven't looked at it as much as linearUpwind). I am out of my office and will look through Richard Pletcher, John Tannehill and Dale Anderson when I get a chance. Laslty, correct me if I'm wrong but the parameter following a definition of a limitedLinear declaration is passed to the limiter, where 1 uses the limiter and 0 does not (with anything in between being a blend).

Sorry for the massive post, and any clarification would be fantastic and if I find an answer, I will post the result here. And for those interested on how I did the math in the forum, look at (http://www.cfd-online.com/Forums/sit...ne-forums.html)

Dan

Last edited by chegdan; September 29, 2011 at 14:24.
chegdan is offline   Reply With Quote

Old   September 28, 2011, 20:05
Default
  #2
Senior Member
 
Daniel P. Combest
Join Date: Mar 2009
Location: St. Louis, USA
Posts: 621
Rep Power: 0
chegdan will become famous soon enoughchegdan will become famous soon enough
on the limitedLinear, it seems that my knowledge of limiters is lacking and it may turn out to be a simple answer. Looking in Dr. Jasak's thesis (pg 98), I found that:

\phi_f = (\phi_f)_{UD} + \Psi(r)\left[(\phi_f)_{HO}-(\phi_f)_{UD}\right]

where (\phi_f)_{HO} is the value of phi at the face for a higher order scheme. For limitedLinear, it is just the central difference scheme as the "HO" and the limiter (\Psi(r)) is a Sweby limiter (http://www.cfd-online.com/Forums/ope...ar-scheme.html). if there is more to add here or there are corrections then please do.

Dan
Pagoda, rdbisme, konangsh and 1 others like this.
chegdan is offline   Reply With Quote

Old   September 29, 2011, 05:48
Default
  #3
New Member
 
Chris
Join Date: Jun 2011
Posts: 12
Rep Power: 15
caramelo is on a distinguished road
Yes you are right. limitedLinear is using the Sweby limiter [1]. If you want further information about TVD Schemes and different limiters, I think [2] might be interesting to get a first brief impression.

About linearUpwind I don't know much. Till now I just thought it is something like linear upwind differencing but reading your post seems like its only half the story.

[1] P.K. Sweby. High resolution schemes using flux limiters for hyperbolic conservation laws.SIAM Journal on Numerical Analysis, (Vol. 21):pp. 995–1011, 1984.
[2] H. K. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson, 2007.
emjay and Pagoda like this.
caramelo is offline   Reply With Quote

Old   September 29, 2011, 15:37
Default
  #4
Senior Member
 
Daniel P. Combest
Join Date: Mar 2009
Location: St. Louis, USA
Posts: 621
Rep Power: 0
chegdan will become famous soon enoughchegdan will become famous soon enough
@caramelo : I found a mistake in my first post concerning the linearUpwind definition and just corrected it (sorry about that). I did have a chance to look at the Sweby paper and also a few other sources on TVD schemes, very interesting. Thanks for the sources.

I see throughout the forum that the linearUpwind is bounded, but Ferziger and Peric' note that second order upwind is unbounded.

My question is that if one uses Gauss linear as a grad scheme for linearUpwind, will this approach the traditional second order upwind and therefore unbounded?

Also, is Gauss linear just the arithmetic average of the two cells or is it the distance weighted average similar to the linear divScheme for advection?

Lastly, is the linearUpwind scheme only bounded if limited versions of the gradient scheme are used, i.e. limited linear, cellLimited, faceMDLimited etc.?

Dan
rdbisme likes this.
chegdan is offline   Reply With Quote

Old   October 1, 2011, 16:51
Default [Solved] A few simple questions about linearUpwind and limitedLinear
  #5
Senior Member
 
Daniel P. Combest
Join Date: Mar 2009
Location: St. Louis, USA
Posts: 621
Rep Power: 0
chegdan will become famous soon enoughchegdan will become famous soon enough
Quote:
Originally Posted by chegdan View Post
@caramelo : I found a mistake in my first post concerning the linearUpwind definition and just corrected it (sorry about that). I did have a chance to look at the Sweby paper and also a few other sources on TVD schemes, very interesting. Thanks for the sources.

I see throughout the forum that the linearUpwind is bounded, but Ferziger and Peric' note that second order upwind is unbounded.

My question is that if one uses Gauss linear as a grad scheme for linearUpwind, will this approach the traditional second order upwind and therefore unbounded?

Also, is Gauss linear just the arithmetic average of the two cells or is it the distance weighted average similar to the linear divScheme for advection?

Lastly, is the linearUpwind scheme only bounded if limited versions of the gradient scheme are used, i.e. limited linear, cellLimited, faceMDLimited etc.?

Dan
Sometimes I think I need to put the hash tag #dumbquestion or #thinking_out_loud on my comments to let everyone know that I'm thinking out loud about something. For my question:

Quote:
Also, is Gauss linear just the arithmetic average of the two cells or is it the distance weighted average similar to the linear divScheme for advection
The answer to that one is that it is the regular Gauss linear interpolation scheme that we use all the time.

In the end I think that I have the answer that I was looking for.

Dan
rdbisme likes this.
chegdan is offline   Reply With Quote

Old   October 3, 2011, 04:45
Default
  #6
Senior Member
 
Florian Krause
Join Date: Mar 2009
Location: Munich
Posts: 103
Rep Power: 17
florian_krause is on a distinguished road
Hi Dan,

Quote:
When is the sfCorr used to correct the value of the face? I guess I am just interested in generating a discussion and confirming or clarifying my thoughts
did you find an answer to this? I also had a look at the source and couldn't find the part where the pieces are put together, namely cell centered phi and gradient of phi.

Apart from this, as far as I understand, linearUpwind scheme is unbounded as long as you don't specify one of the limiters cellLimited, faceLimited etc.

Best,
Florian
ykanani likes this.
florian_krause is offline   Reply With Quote

Old   October 3, 2011, 13:55
Default
  #7
Senior Member
 
Daniel P. Combest
Join Date: Mar 2009
Location: St. Louis, USA
Posts: 621
Rep Power: 0
chegdan will become famous soon enoughchegdan will become famous soon enough
Quote:
When is the sfCorr used to correct the value of the face? I guess I am just interested in generating a discussion and confirming or clarifying my thoughts
From what I can see in the Doxygen information for the limitedSurfaceInterpolationScheme class, everything is pieced together there. linearUpwind returns the weighting factors and then its all put together nicely by the limitedSurfaceInterpolationScheme class.

and of course:
Quote:
Apart from this, as far as I understand, linearUpwind scheme is unbounded as long as you don't specify one of the limiters cellLimited, faceLimited etc
This is what I have found as well...so far. Thanks for the reply and if anyone has a correction, please respond.

Dan
chegdan is offline   Reply With Quote

Old   October 19, 2013, 00:49
Default How can you find out which file contains the source code implementing the 'linearUpwi
  #8
Member
 
yehanyu
Join Date: Mar 2012
Location: Beijing, China
Posts: 48
Rep Power: 14
yhy20081016 is on a distinguished road
Quote:
Originally Posted by chegdan View Post
I am a writing about the schemes that I used in my simulations in my thesis and could use some clarification on the linearUpwind and limitedLinear schemes. I have read http://www.cfd-online.com/Forums/ope...r-schemes.html and Alberto did a good explanation, but I need a little more clarification.

linearUpwind:

I know linearUpwind is second order and bounded by a limiter (e.g. cellMDLimited from http://www.cfd-online.com/Forums/ope...lllimited.html). This is different than the limiters used in limitedLinear. In Fluent documentation, the definition of second order upwind is given as:

\phi_f = \phi + \nabla\phi\cdot\vec{r}

where \phi_f and \phi are the face value of phi and the cell centered values of phi in the upstream cells respectively. I am reading through the code of linearUpwind and I see:

Code:
    GeometricField<Type, fvsPatchField, surfaceMesh>& sfCorr = tsfCorr();

    const surfaceScalarField& faceFlux = this->faceFlux_;

    const labelList& owner = mesh.owner();
    const labelList& neighbour = mesh.neighbour();

    const volVectorField& C = mesh.C();
    const surfaceVectorField& Cf = mesh.Cf();

    GeometricField
        <typename outerProduct<vector, Type>::type, fvPatchField, volMesh>
        gradVf = gradScheme_().grad(vf);

    forAll(faceFlux, facei)
    {
        if (faceFlux[facei] > 0)
        {
            label own = owner[facei];
            sfCorr[facei] = (Cf[facei] - C[own]) & gradVf[own];
        }
        else
        {
            label nei = neighbour[facei];
            sfCorr[facei] = (Cf[facei] - C[nei]) & gradVf[nei];
        }
    }
I see the mesh.C and mesh.Cf and I am led to believe that through quickly reading the code, these are the cell centroid and face centroid, thus producing an r vector that is dotted with the gradient between the owner and neighbor cells (&gradVf) controlled by gradSchemes. I then see some similar code to take care of the boundaries.

When is the sfCorr used to correct the value of the face? I guess I am just interested in generating a discussion and confirming or clarifying my thoughts.

limitedLinear
This again is second order and is bounded using a sweby limiter (http://www.cfd-online.com/Forums/ope...r-schemes.html post 16). I am just a little fuzzy on what the final simplified form of the equation is for limitedLinear (I admit I haven't looked at it as much as linearUpwind). I am out of my office and will look through Richard Pletcher, John Tannehill and Dale Anderson when I get a chance. Laslty, correct me if I'm wrong but the parameter following a definition of a limitedLinear declaration is passed to the limiter, where 1 uses the limiter and 0 does not (with anything in between being a blend).

Sorry for the massive post, and any clarification would be fantastic and if I find an answer, I will post the result here. And for those interested on how I did the math in the forum, look at (http://www.cfd-online.com/Forums/sit...ne-forums.html)

Dan
How can you find out which file contains the source code implementing the 'linearUpwind' scheme? Please teach me. Thank you very much.
yhy20081016 is offline   Reply With Quote

Old   October 21, 2013, 10:57
Default
  #9
Senior Member
 
Daniel P. Combest
Join Date: Mar 2009
Location: St. Louis, USA
Posts: 621
Rep Power: 0
chegdan will become famous soon enoughchegdan will become famous soon enough
Linux commands to search for file names and within files are your friend. To look for the linearUpwind source, try

Code:
cd $FOAM_SRC
grep -R 'linearUpwind' .
and then look for references to linearUpwind (you will see many). From that you can go through source code files. If you already know the name of the source file (in this case its easy since we want linearUpwind.C or linearUpwind.H), you can do a

Code:
cd $FOAM_SRC
find . -name 'linearUpwind.C'
and that will tell you where a specific file lives. After a while you will learn where different source code resides and be able to find things without searching like this. Good luck.
chegdan is offline   Reply With Quote

Old   October 26, 2013, 23:44
Default
  #10
Member
 
yehanyu
Join Date: Mar 2012
Location: Beijing, China
Posts: 48
Rep Power: 14
yhy20081016 is on a distinguished road
Thank you very much.
yhy20081016 is offline   Reply With Quote

Old   January 10, 2014, 18:51
Default
  #11
Senior Member
 
Anne Gerdes
Join Date: Aug 2010
Location: Hamburg
Posts: 168
Rep Power: 16
Anne Lincke is on a distinguished road
Quote:
Originally Posted by chegdan View Post
I am a writing about the schemes that I used in my simulations in my thesis and could use some clarification on the linearUpwind and limitedLinear schemes. I have read http://www.cfd-online.com/Forums/ope...r-schemes.html and Alberto did a good explanation, but I need a little more clarification.

linearUpwind:

I know linearUpwind is second order and bounded by a limiter (e.g. cellMDLimited from http://www.cfd-online.com/Forums/ope...lllimited.html). This is different than the limiters used in limitedLinear. In Fluent documentation, the definition of second order upwind is given as:

\phi_f = \phi + \nabla\phi\cdot\vec{r}

where \phi_f and \phi are the face value of phi and the cell centered values of phi in the upstream cells respectively.
Dear Dan, Dear Foamers,

I found your post which is very interesting for me.
Could you please tell me how one can derive the equation above?
I found this equation implemented in OpenFOAM, and in Fluent it is obviously the same.
But I have problems in understanding this equation.
For LUDS (linear upwind) we discretize the face value as

\phi_f = \phi(C) + 0.5 (\phi(C) - \phi(U))

How is the implemented formula connected to that?

Thank you very much for an answer in advance!

Anne
Anne Lincke is offline   Reply With Quote

Old   April 10, 2015, 04:47
Default
  #12
Senior Member
 
Join Date: Jun 2012
Location: Germany, Bochum
Posts: 230
Rep Power: 16
Bazinga is on a distinguished road
Quote:
Originally Posted by Anne Lincke View Post
Dear Dan, Dear Foamers,

I found your post which is very interesting for me.
Could you please tell me how one can derive the equation above?
I found this equation implemented in OpenFOAM, and in Fluent it is obviously the same.
But I have problems in understanding this equation.
For LUDS (linear upwind) we discretize the face value as

\phi_f = \phi(C) + 0.5 (\phi(C) - \phi(U))

How is the implemented formula connected to that?

Thank you very much for an answer in advance!

Anne
I am a bit late to the discussion but I am studying interpolation schemes a bit and I think I can answer your question. I am still fairly new to the topic so there might be an error so feel free to correct me.

Taylor Expansion around P gives you this formula:
\phi(x_e)=\phi(x_P)+\left ( x_e-x_P \right )\left(\frac{\partial \phi}{\partial x} \right)_P+\frac{\left ( x_e-x_P \right )^2}{2!}\left(\frac{\partial^2 \phi}{\partial x^2}  \right)_P+ \cdots+h.o.t

Now for upwind the flux over the east surface of a 2D CV for a flow from west:

\phi(x_e)=\phi(x_P)

The rest of the equation is the truncation error, thus first order.
If you also calculate the first truncated term your scheme will become second order and you will get this expression for your flux over face e:

\phi(x_e)=\phi(x_P)+\left ( x_e-x_P \right )\left(\frac{\partial \phi}{\partial x} \right)_P

CDS for the gradient gives:

\left(\frac{\partial \phi}{\partial x} \right)_P=\frac{\phi(x_E)-\phi(x_P)}{(x_E-x_P)}

For 2\left ( x_e-x_P \right ) =  (x_E-x_P)

You get:
\phi(x_e)=\phi(x_P)+\frac{\phi(x_E)-\phi(x_P)}{2}

That equals your expression:

\phi_f = \phi(C) + 0.5 (\phi(C) - \phi(U))

Hope that helps
minh khang, dickcruz and Ramzy1990 like this.

Last edited by Bazinga; April 13, 2015 at 04:41.
Bazinga is offline   Reply With Quote

Old   April 10, 2015, 05:54
Default
  #13
Senior Member
 
Anne Gerdes
Join Date: Aug 2010
Location: Hamburg
Posts: 168
Rep Power: 16
Anne Lincke is on a distinguished road
Thank you very much for your answer! Meanwhile I have also been able to understand the formula, but it is nice to see the answer here as well.

Have a nice day!

Anne
Anne Lincke is offline   Reply With Quote

Old   October 10, 2015, 12:52
Default
  #14
Member
 
Davi Barreira
Join Date: Apr 2014
Location: Fortaleza
Posts: 76
Rep Power: 12
davibarreira is on a distinguished road
Isnt the correct way like this?:

\phi_f=\phi(U)+\psi(\phi(C)-\phi(U))

Such that, if \psi=1:
\phi_f=\phi(C)

If \psi=0:
\phi_f=\phi(U)

And if \psi=0, we get the Linear Upwind Differencing (LUD):

\phi_f=\phi(U)+0.5(\phi(C)-\phi(U))
davibarreira is offline   Reply With Quote

Old   October 11, 2015, 03:29
Default
  #15
Senior Member
 
Join Date: Jun 2012
Location: Germany, Bochum
Posts: 230
Rep Power: 16
Bazinga is on a distinguished road
Quote:
Originally Posted by davibarreira View Post
Isnt the correct way like this?:

\phi_f=\phi(U)+\psi(\phi(C)-\phi(U))

Such that, if \psi=1:
\phi_f=\phi(C)

If \psi=0:
\phi_f=\phi(U)

And if \psi=0, we get the Linear Upwind Differencing (LUD):

\phi_f=\phi(U)+0.5(\phi(C)-\phi(U))
Just looked through it briefly. I think you are right. Thanks. The last part of my last reply should be:

"\phi_f = \phi(U) + 0.5 (\phi(C) - \phi(U)) which does not equal the proposed equations."
Bazinga is offline   Reply With Quote

Old   October 11, 2015, 11:17
Default
  #16
Member
 
Davi Barreira
Join Date: Apr 2014
Location: Fortaleza
Posts: 76
Rep Power: 12
davibarreira is on a distinguished road
One thing got me confused though, in the OpenFOAM website (http://cfd.direct/openfoam/user-guide/fvschemes/), it's written "Some TVD/NVD schemes require a coefficient ψ,0 ≤ ψ ≤ 1 where ψ = 1 corresponds to TVD conformance, usually giving best convergence and ψ = 0 corresponds to best accuracy. Running with ψ = 1 is generally recommended."
So this implies that using ψ = 0 would give the higher order scheme (central difference), which is the opposite stated in dr. Jasak's thesis.

I created a new thread with some more questions related to the topic.
http://www.cfd-online.com/Forums/ope...tedlinear.html
Any thoughts?
minh khang likes this.
davibarreira is offline   Reply With Quote

Old   October 13, 2015, 04:59
Default
  #17
Senior Member
 
Anne Gerdes
Join Date: Aug 2010
Location: Hamburg
Posts: 168
Rep Power: 16
Anne Lincke is on a distinguished road
Dear Bazinga and Davi,

I try to derive the implemented formula once again:
Two cell centers in upwind flow direction (u_C and u_U) are taken into account. The Taylor series leads to the approximation of u at cells U and C and, subsequently, at face f

u_C= u_f - u_f' \frac d 2 + u_f'' \frac {d^2}{8} - \cdots
u_U= u_f - u_f'\frac{3d}2 + u_f'' \frac{d^2 9 }{8} - \cdots
u_f= \frac{ 3 u_C - u_U} {2} - HOT,

where d denotes the distance from C to U.
The first order upwind approximation is numerically very stable, as the upwind term stabilizes the diagonal of the matrix.
Therefore, we use the implicit term of an upwind discretization as a matrix coefficient
and add the remaining terms as explicit correction terms on the right-hand side of the equation system.
The numerical approximation for the LUDS discretization thus transforms to

u_f = u_C + \frac {u_C - u_U}{2}

The second term is the explicit correction term.
This equals the implemented formula.
alimea likes this.
Anne Lincke is offline   Reply With Quote

Old   January 12, 2018, 05:08
Default
  #18
Senior Member
 
A. Min
Join Date: Mar 2015
Posts: 308
Rep Power: 12
alimea is on a distinguished road
Quote:
Originally Posted by Anne Lincke View Post
Dear Bazinga and Davi,

I try to derive the implemented formula once again:
Two cell centers in upwind flow direction (u_C and u_U) are taken into account. The Taylor series leads to the approximation of u at cells U and C and, subsequently, at face f

u_C= u_f - u_f' \frac d 2 + u_f'' \frac {d^2}{8} - \cdots
u_U= u_f - u_f'\frac{3d}2 + u_f'' \frac{d^2 9 }{8} - \cdots
u_f= \frac{ 3 u_C - u_U} {2} - HOT,

where d denotes the distance from C to U.
The first order upwind approximation is numerically very stable, as the upwind term stabilizes the diagonal of the matrix.
Therefore, we use the implicit term of an upwind discretization as a matrix coefficient
and add the remaining terms as explicit correction terms on the right-hand side of the equation system.
The numerical approximation for the LUDS discretization thus transforms to

u_f = u_C + \frac {u_C - u_U}{2}

The second term is the explicit correction term.
This equals the implemented formula.

Yes, I think what you have written is correct. Because Bazinga mentioned that:

CDS for the gradient gives:

\left(\frac{\partial \phi}{\partial x} \right)_P=\frac{\phi(x_E)-\phi(x_P)}{(x_E-x_P)}

However, this isn't CDS, that was upwind. Also he/she used downwind point (E) for upwind scheme. so I think that was wrong
Gang Wang likes this.
alimea is offline   Reply With Quote

Old   May 8, 2018, 07:04
Default
  #19
Senior Member
 
Dr. Alexander Vakhrushev
Join Date: Mar 2009
Posts: 256
Blog Entries: 1
Rep Power: 19
makaveli_lcf is on a distinguished road
Send a message via ICQ to makaveli_lcf
Hi guys!

I am making currently some testing with limitedLinear(V) schemes, and I totally see no difference between limiter 0..1!

I would expect with limitedLinear 0 to act as linear divergence scheme,am I write?
But the results are totally different from "Gauss linear" scheme.

I would really appreciate your feedback on this topic.

Cheers,
Alex
Tobi likes this.
__________________
Best regards,

Dr. Alexander VAKHRUSHEV

Christian Doppler Laboratory for "Metallurgical Applications of Magnetohydrodynamics"

Simulation and Modelling of Metallurgical Processes
Department of Metallurgy
University of Leoben

http://smmp.unileoben.ac.at
makaveli_lcf is offline   Reply With Quote

Old   May 8, 2018, 08:00
Default
  #20
Senior Member
 
A. Min
Join Date: Mar 2015
Posts: 308
Rep Power: 12
alimea is on a distinguished road
Quote:
Originally Posted by makaveli_lcf View Post
Hi guys!

I am making currently some testing with limitedLinear(V) schemes, and I totally see no difference between limiter 0..1!

I would expect with limitedLinear 0 to act as linear divergence scheme,am I write?
But the results are totally different from "Gauss linear" scheme.

I would really appreciate your feedback on this topic.

Cheers,
Alex


Hi Alexander

I haven't tested this, but theoretically yes. you are right. According to this sentence of cfd.direct:
limitedLinear: linear scheme that limits towards upwind in regions of rapidly changing gradient; requires a coefficient, where 1 is strongest limiting, tending towards linear as the coefficient tends to 0.


https://cfd.direct/openfoam/user-guide/fvschemes/
alimea is offline   Reply With Quote

Reply

Tags
limitedlinear, linearupwind


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
linearUpwind scheme in OpenFOAM 2.0.1 ??? cabul OpenFOAM 8 November 9, 2011 07:57


All times are GMT -4. The time now is 19:00.