|
[Sponsors] |
June 10, 2010, 08:53 |
cd twice the theoretical value
|
#21 |
Senior Member
maddalena
Join Date: Mar 2009
Posts: 436
Rep Power: 23 |
Hello everybody,
I have the same problem as above: for an airfoil at Re 1.5*10^6, cl matches well with theoretical value, while cd is two times the wanted cd. I am using kOmegaSST as implemented in OF (and not with the lowRe variation), y+ is between 30 and 110 everywhere, with an average value of 70. The fvSchemes is as follows:
Is there anyone that has some ideas on what can be the cause of the problem? Something else I can try or I can check? Suggestions are welcome. Cheers mad |
|
June 10, 2010, 09:39 |
|
#22 |
Senior Member
Mads Reck
Join Date: Aug 2009
Location: Copenhagen, Denmark
Posts: 177
Rep Power: 18 |
Hi Mad
In general you will have a hard time not overpredicting drag and even more so if you have such high y+ as you have. Correct drag prediction is highly dependent on resolving the viscous effects in the boundary layer. You normally need a low-Re turbulence model (i.e. no wall functions) and a y+ of no more than 2. Cl is normally not a problem to predict correctly as it is mainly pressure driven. Actually 100% overprediction of drag is not unheard of, but you should be able to get down to "only" 10-20% overprediction of drag. This all is quite dependent of type of airfoil, angle of attack (HIGHLY - in the linear, substall, region you should be able to do fine), CFD package, turbulence model, 2D/3D, transition modelling, etc. /Mads
__________________
Online free airfoil-mesher for OpenFOAM here |
|
June 10, 2010, 09:51 |
|
#23 | |
Senior Member
maddalena
Join Date: Mar 2009
Posts: 436
Rep Power: 23 |
Quote:
|
||
June 10, 2010, 10:47 |
|
#24 |
Senior Member
Mads Reck
Join Date: Aug 2009
Location: Copenhagen, Denmark
Posts: 177
Rep Power: 18 |
Yes for a highRe model y+ should be in that order of magnitude but I am not too surprised that you can't predict drag better than you observe with a highRe model. I would suggest finer mesh with a y+ around or below 2 and a lowRe model. komega-SST in lowRe mode is a good choice (when we're talking RANS simulation). I am not sure if there is a lowRe implementation of komega-SST in OpenFOAM though, then Launder-Sharma would be my second choice.
/Mads
__________________
Online free airfoil-mesher for OpenFOAM here |
|
June 11, 2010, 06:48 |
|
#25 |
Senior Member
maddalena
Join Date: Mar 2009
Posts: 436
Rep Power: 23 |
Hi Mads,
I succeeded in running two different cases:
Have you some suggestions on how to reduce pressure residual? My fvSolution is: Code:
p { solver GAMG; tolerance 1e-09; relTol 1e-04; smoother GaussSeidel; nPreSweeps 0; nPostSweeps 2; cacheAgglomeration true; nCellsInCoarsestLevel 10; agglomerator faceAreaPair; mergeLevels 1; } Code:
gradSchemes: faceMDLimited Gauss linear 0.5; divSchemes: Gauss linearUpwind cellLimited Gauss linear 1; laplacianSchemes: Gauss linear limited 0.5; mad |
|
June 11, 2010, 07:51 |
|
#26 |
Senior Member
Mads Reck
Join Date: Aug 2009
Location: Copenhagen, Denmark
Posts: 177
Rep Power: 18 |
Mad,
I have most experience with the k-omega-SST model so I do not know why you see such bad drag prediction from the L-S model, I know it is widely used for aerodynamics and I have also used it a few times, so I do not know what's wrong here. Remember that y+ is not the whole story, you also need to have enough cells within the boundary layer, i.e. the stretching should be kept reasonable and definitely below a factor of 1.15-1.2. In any case 500% error on the drag signifies that something isn't right. Previously I have made some sensitivity analysis of max(y+)@airfoil, and I normalized those results and put them below. You can see that one must be careful with y+ as it really can change results a lot. What I did was to systematically vary the size of the first cells at the wall and monitor the influence on the drag. I used CFX with steady simulation with k-omega-SST without transition. CFX has automatic wall functions but at these low y+ it is always in lowRe mode (I hope :-)). Your solution parameters seems correct. Are you doing steady simulations? If so you might not need to solve to such a tough relative tolerance. It might help your solution to develop faster into fully developed flow if you set it to, say, 0.01 or even higher. At least that is how I understood it. /Mads [IMG]file:///C:/Users/mreck/AppData/Local/Temp/moz-screenshot.png[/IMG]
__________________
Online free airfoil-mesher for OpenFOAM here |
|
June 11, 2010, 08:52 |
|
#27 | |
Senior Member
maddalena
Join Date: Mar 2009
Posts: 436
Rep Power: 23 |
Quote:
The mesh I generated has an aspect ratio as high as 150 close to the wall , so that's probably why the lowRe case is not working properly. According to this: http://geolab.larc.nasa.gov/APPS/YPlus/, I should have a first cell layer of 0.0000322 meter, that implies a cell number that is not admissible for me. Thus I probably remain on the high-Re model, knowing that the drag is overestimated. As for the relTol of my fvSolution, yes, I am running a steady simulation, but I read somewhere to keep the relTol tight to obtain better convergence and a stable simulation... Indeed, I succeded to have 2% on cl and 75% on cd. These values are not very far from the point I enter in the discussion yesterday, but at least now I know why and where I should move to improve my results. Really enlighten your job on y+-cd relationship! It has already been saved on my favourite folder. Thankyou, cheers, mad |
||
June 11, 2010, 09:22 |
|
#28 |
Senior Member
Mads Reck
Join Date: Aug 2009
Location: Copenhagen, Denmark
Posts: 177
Rep Power: 18 |
Mad,
An aspect ratio of 150 close to the wall is nothing :-) I assume that you are using hex-meshes and most modern solvers can handle aspect ratios way into 10,000 or even 100,000 and these figures are definitely common in airfoil flows. I am not entirely sure how OpenFOAM copes with high aspect ratio cells though. Your 75% off on drag is, as you mention, not too bad - I can't remember your particular airfoil, but the thicker it is the more difficult it also is to model. /Mads
__________________
Online free airfoil-mesher for OpenFOAM here |
|
June 11, 2010, 09:27 |
|
#29 | |
Senior Member
maddalena
Join Date: Mar 2009
Posts: 436
Rep Power: 23 |
Wait wait wait...
you wrote Quote:
Indeed, my airfoil is thick. Thus, things are not as bad as I think. Uhmmm... In any case, from this discussion I really learned a lot! That's is never useless! |
||
June 11, 2010, 09:59 |
|
#30 |
Senior Member
Mads Reck
Join Date: Aug 2009
Location: Copenhagen, Denmark
Posts: 177
Rep Power: 18 |
Well, maybe I wasn't making myself really clear :-) by [cell-] aspect ratio you would normally mean the ratio between cell-sides and by stretching I was referring to the factor you normally apply when successively increasing the cell-side-height when moving away from the airfoil. You probably know this page where you can read more about this expansion factor. I am not sure about reasonable expansion factors with blockMesh, but try different factors and look at your cell-count and checkMesh output.
Note: You should be able to model a 2D airfoil with around 250k cells, at least my sensitivity investigations seem to point towards this cell-count being reasonable together with a max(y+) of around 2. Also you might check for influence of exterior boundaries, how far away are your outer bounds? /Mads
__________________
Online free airfoil-mesher for OpenFOAM here |
|
June 11, 2010, 10:19 |
|
#31 |
Senior Member
maddalena
Join Date: Mar 2009
Posts: 436
Rep Power: 23 |
Ah, ok! Your stretching is my cell grading! I am using 1.1, that is under the limit you pointed out.
My mesh quality is quite good, there is no error from checkMesh. I have only certain cells that are a little bit too distorted in my opinion, but checkMesh does not complain about them. With the actual set-up, I have around 50k cells for the lowRe mesh, and around 10k for the highRe mesh. The domain is 15 chords far away, and it is of a circular shape, since I need to invesigate a wide range of AoA. Should I further increase it? I think it is a matter of refinement of results, and it cannot lower cd of so much I need for the lowRe case! mad |
|
June 11, 2010, 10:44 |
|
#32 |
Senior Member
Mads Reck
Join Date: Aug 2009
Location: Copenhagen, Denmark
Posts: 177
Rep Power: 18 |
My investigations on cl/cd sensitivity from proximity of outer boundaries show that there can be a substantial influence on the cd (not so much on cl). I am not able to explain that yet, and I would actually expect the impact being on the cl instead.
Anyways, 15 chords is (to my knowledge) definitely not enough. Try to double it and see if your result change, and then try to double it once more if it does. On the cell count: with only 10k cells there is no chance (or maybe only by chance :-)) that you will predict cd properly. Even with 50k cells I would wonder. I have also done mesh dependency study following the lines of Richardson extrapolation and found that these 250k-300k cells are a good, generic, cell count for airfoils in the Re=5mio order of magnitude regime. I saw heavy impact on both cl and cd when going to, say, 80k cells. /Mads
__________________
Online free airfoil-mesher for OpenFOAM here |
|
June 11, 2010, 12:04 |
|
#33 |
Senior Member
maddalena
Join Date: Mar 2009
Posts: 436
Rep Power: 23 |
Indeed cd changes moving the outer boundaries. I was able to reduce cd difference of 60% in regards of theoretical value, with boundaries placed 120 chords away. 240 chords did not bring any improvement. The 120 chords case y+ changed accordingly, reducing to 25 average. The strange thing is that cl difference increase... from 2% with 15 chords to 4% with 120 chords in comparison of expected value. That is with the highRe case and a 20k mesh.
To increase further the cell number, I should increase the cell number on the airfoil surface. But then I need to change the first cell layer thickness to keep my mesh quality good, and this is not fine according to my y+. I have not try the lowRe approach. 250K cells are definitely too much for my objectives! So, I think I have a good setup now. Go back to python to write a polar plot script. Thanks again! mad |
|
December 11, 2013, 16:32 |
|
#35 |
Senior Member
Hasan K.J.
Join Date: Dec 2011
Location: Bristol, United Kingdom
Posts: 200
Rep Power: 15 |
Hey All,
I am some hard time with Convergence I have a windtunnel set up with a Blade My pressure is not going below 0.001 and it is oscillating and so is my Cl and Cd they are oscillating between the same few values residual control 0.25 for p and 0.7 for U and the rest i initialised with potential FOAM with turbulence off then turbulence on, then first order schemes, then second order. still there is oscillation i dunno why, if some one has an explanation please give when i use Code:
p { solver PCG; preconditioner DIC; tolerance 1e-07; relTol 0.001; } but when i use Code:
p { solver GAMG; tolerance 1e-7; relTol 0.0; smoother GaussSeidel; nPreSweeps 1; nPostSweeps 3; nFinestSweeps 3; scaleCorrection true; directSolveCoarsest false; cacheAgglomeration on; nCellsInCoarsestLevel 50; agglomerator faceAreaPair; mergeLevels 1; } I need them to converge as i will be the mapping the data around the blade to a C-Grid for a transient simulation. - So any tips or ideas in getting the residual of P below 0.001 and make it stop oscillating my schemes are Code:
gradSchemes { default cellMDLimited Gauss linear 0.5; } divSchemes { default none; div(phi,U) Gauss linearUpwind grad(U); div(phi,k) Gauss upwind; div(phi,omega) Gauss upwind; div((nuEff*dev(T(grad(U))))) Gauss linear; } laplacianSchemes { default Gauss linear limited 1.0; } Hasan K.J Last edited by wyldckat; December 26, 2013 at 16:24. Reason: Added [CODE][/CODE] |
|
December 26, 2013, 16:26 |
|
#36 | |
Retired Super Moderator
Bruno Santos
Join Date: Mar 2009
Location: Lisbon, Portugal
Posts: 10,981
Blog Entries: 45
Rep Power: 128 |
Greetings to all!
@Hasan: Quote:
Code:
checkMesh -allTopology -allGeometry Bruno
__________________
|
||
December 26, 2013, 16:45 |
|
#37 |
Senior Member
Hasan K.J.
Join Date: Dec 2011
Location: Bristol, United Kingdom
Posts: 200
Rep Power: 15 |
Hey Bruno,
Here is the Mesh check stats Code:
Mesh stats points: 7280988 faces: 21264672 internal faces: 20692704 cells: 6992896 boundary patches: 6 point zones: 0 face zones: 0 cell zones: 0 Overall number of cells of each type: hexahedra: 6992896 prisms: 0 wedges: 0 pyramids: 0 tet wedges: 0 tetrahedra: 0 polyhedra: 0 Checking topology... Boundary definition OK. Cell to face addressing OK. Point usage OK. Upper triangular ordering OK. Face vertices OK. Topological cell zip-up check OK. Face-face connectivity OK. Number of regions: 1 (OK). Checking patch topology for multiply connected surfaces ... Patch Faces Points Surface topology Bounding box inlet 6400 6633 ok (non-closed singly connected) (-0.054 -0.0675 -0.005) (0.0135 0.0675 0.005) outlet 6400 6633 ok (non-closed singly connected) (0.471678 -0.0910434 -0.00500111) (0.471678 0.0439596 0.005) upper 29184 30129 ok (non-closed singly connected) (-5.71043e-05 -0.00016092 -0.005) (0.135 0.0156933 0.005) lower 29184 30129 ok (non-closed singly connected) (2.92301e-19 -0.00350158 -0.005) (0.135 0.00168067 0.005) frontandback 437056 441272 ok (non-closed singly connected) (-0.054 -0.0910434 -0.00500117) (0.471678 0.0675 0.00500058) topandbottom 63744 65802 ok (non-closed singly connected) (0.0135 -0.0910434 -0.005) (0.471678 0.0675 0.005) Checking geometry... Overall domain bounding box (-0.054 -0.0910434 -0.00500117) (0.471678 0.0675 0.00500058) Mesh (non-empty, non-wedge) directions (1 1 1) Mesh (non-empty) directions (1 1 1) Boundary openness (-3.89742e-17 1.95127e-17 9.96953e-16) OK. Max cell openness = 3.26708e-15 OK. Max aspect ratio = 67.4095 OK. Minimum face area = 3.64765e-10. Maximum face area = 2.83567e-05. Face area magnitudes OK. Min volume = 1.13989e-13. Max volume = 8.86151e-09. Total volume = 0.000674752. Cell volumes OK. Mesh non-orthogonality Max: 68.5046 average: 8.38422 Non-orthogonality check OK. Face pyramids OK. Max skewness = 0.86379 OK. Coupled point location match (average 0) OK. Face tets OK. Min/max edge length = 6.4e-06 0.00635047 OK. All angles in faces OK. Face flatness (1 = flat, 0 = butterfly) : average = 1 min = 0.999749 All face flatness OK. Cell determinant (wellposedness) : minimum: 5.55889e-08 average: 1.81818 ***Cells with small determinant found, number of cells: 168328 <<Writing 168328 under-determined cells to set underdeterminedCells Concave cell check OK. Failed 1 mesh checks. Hasan K.J Last edited by wyldckat; December 26, 2013 at 16:47. Reason: Added [CODE][/CODE] |
|
December 26, 2013, 16:54 |
|
#38 | |
Retired Super Moderator
Bruno Santos
Join Date: Mar 2009
Location: Lisbon, Portugal
Posts: 10,981
Blog Entries: 45
Rep Power: 128 |
Quote:
The simplified way to look at this is to imagine that the cell in question is as if it were extremely small (near zero) or that it is very contorted. What this equates to is a distortion in the mesh, that leads to non-physical values, because the numbers are stretched more than they should... Have a look into this blog post of mine, to see the effects bad meshes can have on results: OpenFOAM: Interesting cases of bad meshes and bad initial conditions |
||
December 26, 2013, 17:02 |
|
#39 |
Senior Member
Hasan K.J.
Join Date: Dec 2011
Location: Bristol, United Kingdom
Posts: 200
Rep Power: 15 |
But, I made the mesh in salome
and the distance of the first cell was what it had to be even though it was that small, to have a Y+ of 0.5-1, so is there any way to maintain the Y+ and the results Thanks, Hasan K.J |
|
December 26, 2013, 19:08 |
|
#40 |
Retired Super Moderator
Bruno Santos
Join Date: Mar 2009
Location: Lisbon, Portugal
Posts: 10,981
Blog Entries: 45
Rep Power: 128 |
After the checkMesh command, run this command:
Code:
foamToVTK -cellSet underdeterminedCells
|
|
|
|
Similar Threads | ||||
Thread | Thread Starter | Forum | Replies | Last Post |
Lift and drag coefficient with strange values for NACA airfoil | antonio_ing | OpenFOAM Running, Solving & CFD | 16 | September 13, 2012 13:21 |
NACA 23020 airfoil drag and lift calculation. | Zmur | CFX | 2 | December 23, 2008 17:35 |
Drag prediction for Naca 23012 airfoil | Ravel Bogatec | CFX | 17 | February 15, 2008 01:21 |
Naca airfoil with to much drag | Andreas | CFX | 6 | March 17, 2006 07:13 |
Drag predicion for a NACA 0012 airfoil | Peter Giannakopoulos | FLUENT | 7 | March 9, 2004 16:32 |